Paola Ferrante
ENEA
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paola Ferrante.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Sarah Frusciante; Gianfranco Diretto; Mark Bruno; Paola Ferrante; Marco Pietrella; Alfonso Prado-Cabrero; Angela Rubio-Moraga; Peter Beyer; Lourdes Gómez-Gómez; Salim Al-Babili; Giovanni Giuliano
Significance Saffron is a triploid, sterile species whose red stigmas constitute the most expensive spice on Earth. The color, the taste, and the aroma of the spice are owed to the crocus-specific apocarotenoid accumulation of crocetin/crocins, picrocrocin, and safranal. Through deep transcriptome analysis, we identified a novel carotenoid cleavage dioxygenase (CCD) whose expression profile parallels the production of crocetin. Using in bacterio, in vitro, and in planta functional assays, we demonstrate that CCD2 is the dioxygenase catalyzing the first dedicated step in saffron crocetin biosynthesis starting from the carotenoid zeaxanthin. Crocus sativus stigmas are the source of the saffron spice and accumulate the apocarotenoids crocetin, crocins, picrocrocin, and safranal, responsible for its color, taste, and aroma. Through deep transcriptome sequencing, we identified a novel dioxygenase, carotenoid cleavage dioxygenase 2 (CCD2), expressed early during stigma development and closely related to, but distinct from, the CCD1 dioxygenase family. CCD2 is the only identified member of a novel CCD clade, presents the structural features of a bona fide CCD, and is able to cleave zeaxanthin, the presumed precursor of saffron apocarotenoids, both in Escherichia coli and in maize endosperm. The cleavage products, identified through high-resolution mass spectrometry and comigration with authentic standards, are crocetin dialdehyde and crocetin, respectively. In vitro assays show that CCD2 cleaves sequentially the 7,8 and 7′,8′ double bonds adjacent to a 3-OH-β-ionone ring and that the conversion of zeaxanthin to crocetin dialdehyde proceeds via the C30 intermediate 3-OH-β-apo-8′-carotenal. In contrast, zeaxanthin cleavage dioxygenase (ZCD), an enzyme previously claimed to mediate crocetin formation, did not cleave zeaxanthin or 3-OH-β-apo-8′-carotenal in the test systems used. Sequence comparison and structure prediction suggest that ZCD is an N-truncated CCD4 form, lacking one blade of the β-propeller structure conserved in all CCDs. These results constitute strong evidence that CCD2 catalyzes the first dedicated step in crocin biosynthesis. Similar to CCD1, CCD2 has a cytoplasmic localization, suggesting that it may cleave carotenoids localized in the chromoplast outer envelope.
Journal of Biological Chemistry | 2012
Paola Ferrante; Matteo Ballottari; Giulia Bonente; Giovanni Giuliano; Roberto Bassi
Background: Light harvesting genes associated with photosystem II (LHCBM) form a conserved multigene family involved in light absorption and photoprotection. Results: Silencing of LHCBM1 and LHCBM2/7 genes resulted, respectively, in reduced capacity for energy dissipation and state transitions. Conclusion: Despite the high homology, each LHCB protein exerts a specific role. Significance: Comprehension of LHCBM protein specific functions paves the way for the manipulation of the Chlamydomonas photosynthetic antennas. The photosystem II antenna of Chlamydomonas reinhardtii is composed of monomeric and trimeric complexes, the latter encoded by LHCBM genes. We employed artificial microRNA technology to specifically silence the LHCBM2 and LHCBM7 genes, encoding identical mature polypeptides, and the LHCBM1 gene. As a control, we studied the npq5 mutant, deficient in the LHCBM1 protein. The organization of LHCII complexes, functional antenna size, capacity for photoprotection, thermal energy dissipation and state transitions, and resistance to reactive oxygen species was studied in the various genotypes. Silencing of the LHCBM2/7 genes resulted in a decrease of an LHCII protein with an apparent molecular mass of 22 kDa, whereas silencing/lack of LHCBM1 caused the decrease/disappearance of a 23-kDa protein. A decrease in the abundance of trimeric LHCII complexes and in functional antenna size was observed in both LHCBM2/7 and LHCBM1 knockouts. In agreement with previous data, depletion of LHCBM1 decreased the capacity for excess energy dissipation but not the ability to perform state transitions. The opposite was true for LHCBM2/7, implying that this polypeptide has a different functional role from LHCBM1. The abundance of LHCBM1 and LHCBM2/7 is in both cases correlated with resistance to superoxide anion, whereas only LHCBM1 is also involved in singlet oxygen scavenging. These results suggest that different LHCBM components have well defined, non-redundant functions despite their high homology, implying that engineering of LHCBM proteins can be an effective strategy for manipulating the light harvesting system of Chlamydomonas reinhardtii.
PLOS ONE | 2013
Olivia Costantina Demurtas; Silvia Massa; Paola Ferrante; Aldo Venuti; Rosella Franconi; Giovanni Giuliano
Background The E7 protein of the Human Papillomavirus (HPV) type 16, being involved in malignant cellular transformation, represents a key antigen for developing therapeutic vaccines against HPV-related lesions and cancers. Recombinant production of this vaccine antigen in an active form and in compliance with good manufacturing practices (GMP) plays a crucial role for developing effective vaccines. E7-based therapeutic vaccines produced in plants have been shown to be active in tumor regression and protection in pre-clinical models. However, some drawbacks of in whole-plant vaccine production encouraged us to explore the production of the E7-based therapeutic vaccine in Chlamydomonas reinhardtii, an organism easy to grow and transform and fully amenable to GMP guidelines. Methodology/Principal Findings An expression cassette encoding E7GGG, a mutated, attenuated form of the E7 oncoprotein, alone or as a fusion with affinity tags (His6 or FLAG), under the control of the C. reinhardtii chloroplast psbD 5′ UTR and the psbA 3′ UTR, was introduced into the C. reinhardtii chloroplast genome by homologous recombination. The protein was mostly soluble and reached 0.12% of total soluble proteins. Affinity purification was optimized and performed for both tagged forms. Induction of specific anti-E7 IgGs and E7-specific T-cell proliferation were detected in C57BL/6 mice vaccinated with total Chlamydomonas extract and with affinity-purified protein. High levels of tumor protection were achieved after challenge with a tumor cell line expressing the E7 protein. Conclusions The C. reinhardtii chloroplast is a suitable expression system for the production of the E7GGG protein, in a soluble, immunogenic form. The production in contained and sterile conditions highlights the potential of microalgae as alternative platforms for the production of vaccines for human uses.
PLOS ONE | 2008
Paola Ferrante; Claudia Catalanotti; Giulia Bonente; Giovanni Giuliano
Background Chlamydomonas reinhardtii is a model system for algal and cell biology and is used for biotechnological applications, such as molecular farming or biological hydrogen production. The Chlamydomonas metal-responsive CYC6 promoter is repressed by copper and induced by nickel ions. However, induction by nickel is weak in some strains, poorly reversible by chelating agents like EDTA, and causes, at high concentrations, toxicity side effects on Chlamydomonas growth. Removal of these bottlenecks will encourage the wide use of this promoter as a chemically regulated gene expression system. Methodology Using a codon-optimized Renilla luciferase as a reporter gene, we explored several strategies to improve the strength and reversibility of CYC6 promoter induction. Use of the first intron of the RBCS2 gene or of a modified TAP medium increases the strength of CYC6 induction up to 20-fold. In the modified medium, induction is also obtained after addition of specific copper chelators, like TETA. At low concentrations (up to 10 µM) TETA is a more efficient inducer than Ni, which becomes a very efficient inducer at higher concentrations (50 µM). Neither TETA nor Ni show toxicity effects at the concentrations used. Unlike induction by Ni, induction by TETA is completely reversible by micromolar copper concentrations, thus resulting in a transient “wave” in luciferase activity, which can be repeated in subsequent growth cycles. Conclusions We have worked out a chemically regulated gene expression system that can be finely tuned to produce temporally controlled “waves” in gene expression. The use of cassettes containing the CYC6 promoter, and of modified growth media, is a reliable and economically sustainable system for the temporally controlled expression of foreign genes in Chlamydomonas.
BMC Plant Biology | 2011
Paola Ferrante; Dennis R. Diener; Joel L. Rosenbaum; Giovanni Giuliano
BackgroundChlamydomonas reinhardtii is a model system for the biology of unicellular green algae. Chemically regulated promoters, such as the nickel-inducible CYC6 or the low CO2-inducible CAH1 promoter, may prove useful for expressing, at precise times during its cell cycle, proteins with relevant biological functions, or complementing mutants in genes encoding such proteins. To this date, this has not been reported for the above promoters.ResultsWe fused the CYC6 and CAH1 promoters to an HA-tagged RSP3 gene, encoding a protein of the flagellar radial spoke complex. The constructs were used for chemically regulated complementation of the pf14 mutant, carrying an ochre mutation in the RSP3 gene. 7 to 8% of the transformants showed cells with restored motility after induction with nickel or transfer to low CO2 conditions, but not in non-inducing conditions. Maximum complementation (5% motile cells) was reached with very different kinetics (5-6 hours for CAH1, 48 hours for CYC6). The two inducible promoters drive much lower levels of RSP3 protein expression than the constitutive PSAD promoter, which shows almost complete rescue of motility.ConclusionsTo our knowledge, this is the first example of the use of the CYC6 or CAH1 promoters to perform a chemically regulated complementation of a Chlamydomonas mutant. Based on our data, the CYC6 and CAH1 promoters should be capable of fully complementing mutants in genes whose products exert their biological activity at low concentrations.
Journal of Experimental Botany | 2016
Laura Girolomoni; Paola Ferrante; Silvia Berteotti; Giovanni Giuliano; Roberto Bassi; Matteo Ballottari
Highlight LHCBM4/6/8 are three closely related light-harvesting proteins in Chlamydomonas reinhardtii. Reverse genetics show that they have specific functions in photoprotection, namely in non-photochemical quenching and state transitions.
Plant Physiology | 2018
Olivia Costantina Demurtas; Sarah Frusciante; Paola Ferrante; Gianfranco Diretto; Noraddin Hosseinpour Azad; Marco Pietrella; Giuseppe Aprea; Anna Rita Taddei; Elena Romano; Jianing Mi; Salim Al-Babili; Lorenzo Frigerio; Giovanni Giuliano
Carotenoid cleavage dioxygenase 2 and candidate aldehyde dehydrogenase, and UDP-glycosyltransferase enzymes involved in saffron crocin biosynthesis are localized in the chromoplast, the endoplasmic reticulum, and the cytoplasm. Saffron is the dried stigmas of Crocus sativus and is the most expensive spice in the world. Its red color is due to crocins, which are apocarotenoid glycosides that accumulate in the vacuole to a level up to 10% of the stigma dry weight. Previously, we characterized the first dedicated enzyme in the crocin biosynthetic pathway, carotenoid cleavage dioxygenase2 (CsCCD2), which cleaves zeaxanthin to yield crocetin dialdehyde. In this work, we identified six putative aldehyde dehydrogenase (ALDH) genes expressed in C. sativus stigmas. Heterologous expression in Escherichia coli showed that only one of corresponding proteins (CsALDH3I1) was able to convert crocetin dialdehyde into the crocin precursor crocetin. CsALDH3I1 carries a carboxyl-terminal hydrophobic domain, similar to that of the Neurospora crassa membrane-associated apocarotenoid dehydrogenase YLO-1. We also characterized the UDP-glycosyltransferase CsUGT74AD1, which converts crocetin to crocins 1 and 2′. In vitro assays revealed high specificity of CsALDH3I1 for crocetin dialdehyde and long-chain apocarotenals and of CsUGT74AD1 for crocetin. Following extract fractionation, CsCCD2, CsALDH3I1, and CsUGT74AD1 were found in the insoluble fraction, suggesting their association with membranes or large insoluble complexes. Analysis of protein localization in both C. sativus stigmas and following transgene expression in Nicotiana benthamiana leaves revealed that CsCCD2, CsALDH3I, and CsUGT74AD1 were localized to the plastids, the endoplasmic reticulum, and the cytoplasm, respectively, in association with cytoskeleton-like structures. Based on these findings and current literature, we propose that the endoplasmic reticulum and cytoplasm function as transit centers for metabolites whose biosynthesis starts in the plastid and are accumulated in the vacuole.
Archive | 2009
Giovanni Giuliano; Paola Ferrante
BMC Biotechnology | 2018
Paola Mini; Olivia Costantina Demurtas; Silvia Valentini; Patrizia Pallara; Giuseppe Aprea; Paola Ferrante; Giovanni Giuliano
Archive | 2017
Giovanni Giuliano; Paola Ferrante; Sarah Frusciante; Gianfranco Diretto; Marco Pietrella; Salim Al-Babili