Paola Festa
University of Salerno
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paola Festa.
Archive | 2002
Paola Festa; Mauricio G. C. Resende
A greedy randomized adaptive search procedure (GRASP) is a metaheuristic for combinatorial optimization. It is a multi-start or iterative process, in which each GRASP iteration consists of two phases, a construction phase, in which a feasible solution is produced, and a local search phase, in which a local optimum in the neighborhood of the constructed solution is sought. Since 1989, numerous papers on the basic aspects of GRASP, as well as enhancements to the basic metaheuristic have appeared in the literature. GRASP has been applied to a wide range of combinatorial optimization problems, ranging from scheduling and routing to drawing and turbine balancing. This paper is an annotated bibliography of the GRASP literature from 1989 to 2001.
Encyclopedia of Optimization | 1999
Paola Festa; Panos M. Pardalos; Mauricio G. C. Resende
Not long ago, there appeared to be a consensus in the literature that feedback set problems, which originated from the area of combinational circuit design, were the least understood among all the classical combinatorial optimization problems due to the lack of positive results in efficient exact and approximating algorithms. This picture has been totally changed in recent years. Dramatic progress has occurred in developing approximation algorithms with provable performance; new bounds have been established one after the other and it is probably fair to say that feedback set problems are becoming among the most exciting frontend problems in combinatorial optimization.
Optimization Methods & Software | 2002
Paola Festa; Panos M. Pardalos; Mauricio G. C. Resende; Celso C. Ribeiro
Given an undirected graph with edge weights, the MAX-CUT problem consists in finding a partition of the nodes into two subsets, such that the sum of the weights of the edges having endpoints in different subsets is maximized. It is a well-known NP-hard problem with applications in several fields, including VLSI design and statistical physics. In this article, a greedy randomized adaptive search procedure (GRASP), a variable neighborhood search (VNS), and a path-relinking (PR) intensification heuristic for MAX-CUT are proposed and tested. New hybrid heuristics that combine GRASP, VNS, and PR are also proposed and tested. Computational results indicate that these randomized heuristics find near-optimal solutions. On a set of standard test problems, new best known solutions were produced for many of the instances.
International Transactions in Operational Research | 2009
Paola Festa; Mauricio G. C. Resende
A greedy randomized adaptive search procedure (GRASP) is a metaheuristic for combinatorial optimization. It is a multi-start or iterative process, in which each GRASP iteration consists of two phases, a construction phase, in which a feasible solution is produced, and a local search phase, in which a local optimum in the neighborhood of the constructed solution is sought. Since 1989, numerous papers on the basic aspects of GRASP, as well as enhancements to the basic metaheuristic have appeared in the literature. GRASP has been applied to a wide range of combinatorial optimization problems, ranging from scheduling and routing to drawing and turbine balancing. This is the first of two papers with an annotated bibliography of the GRASP literature from 1989 to 2008. This paper covers algorithmic aspects of GRASP.
International Transactions in Operational Research | 2009
Paola Festa; Mauricio G. C. Resende
A greedy randomized adaptive search procedure (GRASP) is a metaheuristic for combinatorial optimization. It is a multi-start or iterative process, in which each GRASP iteration consists of two phases, a construction phase, in which a feasible solution is produced, and a local search phase, in which a local optimum in the neighborhood of the constructed solution is sought. Since 1989, numerous papers on the basic aspects of GRASP, as well as enhancements to the basic metaheuristic, have appeared in the literature. GRASP has been applied to a wide range of combinatorial optimization problems, ranging from scheduling and routing to drawing and turbine balancing. This is the second of two papers with an annotated bibliography of the GRASP literature from 1989 to 2008. In the companion paper, algorithmic aspects of GRASP are surveyed. In this paper, we cover the literature where GRASP is applied to scheduling, routing, logic, partitioning, location, graph theory, assignment, manufacturing, transportation, telecommunications, biology and related fields, automatic drawing, power systems, and VLSI design.
international world wide web conferences | 2005
Piero A. Bonatti; Paola Festa
While many works have been devoted to service matchmaking and modeling nonfunctional properties, the problem of matching service requests to offers in an optimal way has not yet been extensively studied. In this paper we formalize three kinds of optimal service selection problems, based on different criteria. Then we study their complexity and implement solutions. We prove that one-time costs make the optimal selection problem computationally hard; in the absence of these costs the problem can be solved in polynomial time. We designed and implemented both exact and heuristic (suboptimal) algorithms for the hard case, and carried out a preliminary experimental evaluation with interesting results.
Telecommunication Systems | 2011
Paola Festa; Mauricio G. C. Resende
GRASP (Greedy Randomized Adaptive Search Procedures) is a multistart metaheuristic for producing good-quality solutions of combinatorial optimization problems. Each GRASP iteration is usually made up of a construction phase, where a feasible solution is constructed, and a local search phase which starts at the constructed solution and applies iterative improvement until a locally optimal solution is found. While, in general, the construction phase of GRASP is a randomized greedy algorithm, other types of construction procedures have been proposed. Repeated applications of a construction procedure yields diverse starting solutions for the local search. This paper gives an overview of GRASP describing its basic components and enhancements to the basic procedure, including reactive GRASP and intensification strategies.
ACM Journal of Experimental Algorithms | 2007
Paola Festa; Panos M. Pardalos; Leonidas S. Pitsoulis; Mauricio G. C. Resende
A GRASP with path relinking for finding good-quality solutions of the weighted maximum satisfiability problem (MAX-SAT) is described in this paper. GRASP, or Greedy Randomized Adaptive Search Procedure, is a randomized multistart metaheuristic, where, at each iteration, locally optimal solutions are constructed, each independent of the others. Previous experimental results indicate its effectiveness for solving weighted MAX-SAT instances. Path relinking is a procedure used to intensify the search around good-quality isolated solutions that have been produced by the GRASP heuristic. Experimental comparison of the pure GRASP (without path relinking) and the GRASP with path relinking illustrates the effectiveness of path relinking in decreasing the average time needed to find a good-quality solution for the weighted maximum satisfiability problem.
Journal of Heuristics | 2011
Renato De Leone; Paola Festa; E. Marchitto
This paper addresses the problem of determining the best scheduling for Bus Drivers, a
Computers & Mathematics With Applications | 2008
Paola Bertolazzi; Giovanni Felici; Paola Festa; Giuseppe Lancia
\mathcal{NP}