Paola Indovina
College of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paola Indovina.
Journal of Cellular Physiology | 2013
Paola Indovina; Eleonora Marcelli; Nadia Casini; Valeria Rizzo; Antonio Giordano
The retinoblastoma (RB) family of proteins, including RB1/p105, retinoblastoma‐like 1 (RBL1/p107), and retinoblastoma‐like 2 (RBL2/p130), is principally known for its central role on cell cycle regulation. The inactivation of RB proteins confers a growth advantage and underlies multiple types of tumors. Recently, it has been shown that RB proteins have other important roles, such as preservation of chromosomal stability, induction and maintenance of senescence and regulation of apoptosis, cellular differentiation, and angiogenesis. RB proteins are involved in many cellular pathways and act as transcriptional regulators able to bind several transcription factors, thus antagonizing or potentiating their functions. Furthermore, RB proteins might control the expression of specific target genes by recruiting chromatin remodeling enzymes. Although many efforts have been made to dissect the different functions of RB proteins, it remains still unclear which are necessary for cancer suppression and the role they play at distinct steps of carcinogenesis. Moreover, RB proteins can behave differently in various cell types or cell states. Elucidating the intricate RB protein network in regulating cell fate might provide the knowledge necessary to explain their potent tumor suppressor activity and to design novel therapeutic strategies. J. Cell. Physiol. 228: 525–535, 2013.
Mass Spectrometry Reviews | 2013
Paola Indovina; Eleonora Marcelli; Francesca Pentimalli; Piero Tanganelli; Giulio Tarro; Antonio Giordano
Lung cancer is the leading cause of cancer death in men and women in Western nations, and is among the deadliest cancers with a 5-year survival rate of 15%. The high mortality caused by lung cancer is attributable to a late-stage diagnosis and the lack of effective treatments. So, it is crucial to identify new biomarkers that could function not only to detect lung cancer at an early stage but also to shed light on the molecular mechanisms that underlie cancer development and serve as the basis for the development of novel therapeutic strategies. Considering that DNA-based biomarkers for lung cancer showed inadequate sensitivity, specificity, and reproducibility, proteomics could represent a better tool for the identification of useful biomarkers and therapeutic targets for this cancer type. Among the proteomics technologies, the most powerful tool is mass spectrometry. In this review, we describe studies that use mass spectrometry-based proteomics technologies to analyze tumor proteins and peptides, which might represent new diagnostic, prognostic, and predictive markers for lung cancer. We focus in particular on those findings that hold promise to impact significantly on the clinical management of this disease.
International Journal of Proteomics | 2011
Paola Indovina; Eleonora Marcelli; Pasquale Maranta; Giulio Tarro
Lung cancer is the most common cause of cancer death in both men and women in Western countries, with a 5-year survival rate of 15%, which is among the lowest of all cancers. The high mortality from lung cancer is due not only to the late stage diagnosis but also to the lack of effective treatments even for patients diagnosed with stage I lung cancer. Therefore, there is an urgent need to identify new markers for early diagnosis and prognosis that could serve to open novel therapeutic avenues. Proteomics can represent an important tool for the identification of biomarkers and therapeutic targets for lung cancer since DNA-based biomarkers did not prove to have adequate sensitivity, specificity, and reproducibility. In this paper we will describe studies focused on the identification of new diagnostic, prognostic, and predictive markers for lung cancer, using proteomics technologies.
Current Pharmaceutical Design | 2013
Luca Esposito; Paola Indovina; Flora Magnotti; Daniele Conti; Antonio Giordano
Normal cell cycle progression is controlled by the sequential action of cyclin-dependent kinases (CDKs), the activity of which depends on their binding to regulatory partners (cyclins). Deregulation of cell cycle is one of the first steps that transform normal cells into tumor cells. Indeed, most cancer cells bear mutations in members of the pathways that control the CDK activity. For this reason, this kinase family is a crucial target for the development of new drugs for cancer therapy. Recently, both ATP-competitive CDK inhibitors and the last generation of non-ATP-competitive inhibitors are emerging as promising agents for targeted therapies. Many clinical trials are in progress, using CDK inhibitors both as single agents and in combination with traditional cytotoxic agents. In this review, we will discuss new therapeutic strategies based on the use of CDK inhibitors in cancer.
Cell Cycle | 2014
Domenico Di Marzo; Iris Maria Forte; Paola Indovina; Elena Di Gennaro; Valeria Rizzo; Francesca Giorgi; Eliseo Mattioli; Carmelina Antonella Iannuzzi; Alfredo Budillon; Antonio Giordano; Francesca Pentimalli
Malignant mesothelioma, a very aggressive tumor associated to asbestos exposure, is expected to increase in incidence, and unfortunately, no curative modality exists. Reactivation of p53 is a new attractive antitumoral strategy. p53 is rarely mutated in mesothelioma, but it is inactivated in most tumors by the lack of p14ARF. Here, we evaluated the feasibility of this approach in pleural mesothelioma by testing RITA and nutlin-3, two molecules able to restore p53 function through a different mechanism, on a panel of mesothelioma cell lines representing the epithelioid (NCI-H28, NCI-H2452, IST-MES 2), biphasic (MSTO-211H), and sarcomatoid (NCI-H2052) histotypes compared with the normal mesothelial HMC-hTERT. RITA triggered robust caspase-dependent apoptosis specifically in epithelioid and biphasic mesothelioma cell lines, both through wild-type and mutant p53, concomitant to p21 downregulation. Conversely, nutlin-3 induced a p21-dependent growth arrest, rather than apoptosis, and was slightly toxic on HMC-hTERT. Interestingly, we identified a previously undetected point mutation of p53 (p.Arg249Ser) in IST-MES 2, and showed that RITA is also able to reactivate this p53 mutant protein and its apoptotic function. RITA reduced tumor growth in a MSTO-211H-derived xenograft model of mesothelioma and synergized with cisplatin, which is the mainstay of treatment for this tumor. Our data indicate that reactivation of p53 and concomitant p21 downregulation effectively induce cell death in mesothelioma, a tumor characterized by a high intrinsic resistance to apoptosis. Altogether, our findings provide the preclinical framework supporting the use of p53-reactivating agents alone, or in combination regimens, to improve the outcome of patients with mesothelioma.
Cell Cycle | 2012
Martina Cozzi; Francesca Giorgi; Eleonora Marcelli; Francesca Pentimalli; Iris Maria Forte; Silvia Schenone; Vittorio D’Urso; Giulia De Falco; Maurizio Botta; Antonio Giordano; Paola Indovina
Burkitt lymphoma (BL) is a highly aggressive B cell neoplasm. Although intensive polychemotherapy regimens have proven very effective, they are associated with significant toxicities. Therefore, more rational therapies that selectively target the molecular abnormalities of BL are needed. Recent data suggest that the tyrosine kinase SRC could represent a therapeutic target for BL. We found that new pyrazolo[3,4-d]pyrimidine SRC inhibitors exerted a significant cytotoxic effect and induced apoptosis on two BL cell lines, as determined by MTS assays, cytofluorimetric analyses and caspase 3 assay. Notably, our SRC inhibitors proved to be more effective than the well-known SRC inhibitor PP2 [4-amino-5-(4-chlorophenyl)-7-(dimethylethyl)pyrazolo[3,4-d]pyrimidine] in BL cells. Moreover, our small molecules induced a G2/M arrest in BL cells through a possible new mechanism, whereby SRC inhibition hinders an AKT-WEE1-cyclin-dependent kinase 1 (CDK1) axis, leading to inhibition of CDK1, the main trigger of entry into mitosis. By using a small-molecule inhibitor of WEE1, a crucial CDK1 negative regulator, we were able to shift the balance toward apoptosis rather than growth arrest and enhance the efficacy of the SRC inhibitors, suggesting a possible use of these selective drugs in combination for a safe and efficient treatment of BL.
Cancer Biology & Therapy | 2014
Paola Indovina; Eleonora Marcelli; Domenico Di Marzo; Nadia Casini; Iris Maria Forte; Francesca Giorgi; Luigi Alfano; Francesca Pentimalli; Antonio Giordano
Malignant mesothelioma (MM) is a very aggressive asbestos-related neoplasm of the serous membranes, whose incidence is increasing worldwide. Although the introduction of new drug combinations, such as cisplatin plus pemetrexed/gemcitabine, has determined an improvement in the patient quality of life, MM remains a universally fatal disease. The observation that key G1/S checkpoint regulators are often functionally inactivated in MM prompted us to test whether the use of G2/M checkpoint inhibitors, able to sensitize G1/S checkpoint-defective cancer cells to DNA-damaging agents, could be successful in MM. We treated six MM cell lines, representative of different histotypes (epithelioid, biphasic, and sarcomatoid), with cisplatin in combination with MK-1775, an inhibitor of the G2/M checkpoint kinase WEE1. We observed that MK-1775 enhanced the cisplatin cytotoxic effect in all MM cell lines, except the sarcomatoid cell line, which is representative of the most aggressive histotype. As expected, the enhancement in cisplatin toxicity was accompanied by a decrease in the inactive phosphorylated form of cyclin-dependent kinase 1 (CDK1), a key substrate of WEE1, which is indicative of G2/M checkpoint inactivation. Consistently, we also observed a decrease in G2/M accumulation and an increase in mitotic entry of DNA-damaged cells and apoptosis, probably due to the loss of the cell ability to arrest cell cycle in response to DNA damage, irrespectively of p53 mutational status. Notably, this treatment did not increase cisplatin cytotoxicity on normal cells, thus suggesting a possible use of MK-1775 in combination with cisplatin for a safe and efficient treatment of epithelioid and biphasic MM.
Cancer Biology & Therapy | 2010
Paola Indovina; Antonio Giordano
Commentary to: MK-1775, a small molecule Wee1 inhibitor, enhances anti-tumor efficacy of various DNA-damaging agents, including 5-fluorouracil Hiroshi Hirai, Tsuyoshi Arai, Megumu Okada, Toshihide Nishibata, Makiko Kobayashi, Naoko Sakai, Kazuhide Imagaki, Junko Ohtani, Takumi Sakai, Takashi Yoshizumi, Shinji Mizuarai, Yoshikazu Iwasawa and Hidehito Kotani
Journal of Cellular Biochemistry | 2015
Elisa Ceccherini; Paola Indovina; Claudio Zamperini; Elena Dreassi; Nadia Casini; Ornella Cutaia; Iris Maria Forte; Francesca Pentimalli; Luca Esposito; Maria Sole Polito; Silvia Schenone; Maurizio Botta; Antonio Giordano
Glioblastoma (GB) is the most common and aggressive primary tumor of the central nervous system. The current standard of care for GB consists of surgical resection, followed by radiotherapy combined with temozolomide chemotherapy. However, despite this intensive treatment, the prognosis remains extremely poor. Therefore, more effective therapies are urgently required. Recent studies indicate that SRC family kinases (SFKs) could represent promising molecular targets for GB therapy. Here, we challenged four GB cell lines with a new selective pyrazolo[3,4‐d]pyrimidine derivative SFK inhibitor, called SI221. This compound exerted a significant cytotoxic effect on GB cells, without significantly affecting non‐tumor cells (primary human skin fibroblasts), as evaluated by MTS assay. We also observed that SI221 was more effective than the well‐known SFK inhibitor PP2 in GB cells. Notably, despite the high intrinsic resistance to apoptosis of GB cells, SI221 was able to induce this cell death process in all the GB cell lines, as observed through cytofluorimetric analysis and caspase‐3 assay. SI221 also exerted a long‐term inhibition of GB cell growth and was able to reduce GB cell migration, as shown by clonogenic assay and scratch test, respectively. Moreover, through in vitro pharmacokinetic assays, SI221 proved to have a high metabolic stability and a good potential to cross the blood brain barrier, which is an essential requirement for a drug intended to treat brain tumors. Therefore, despite the need of developing strategies to improve SI221 solubility, our results suggest a potential application of this selective SFK inhibitor in GB therapy. J. Cell. Biochem. 116: 856–863, 2015.
Journal of Cellular Physiology | 2017
Paola Indovina; Nadia Casini; Iris Maria Forte; Tiziana Garofano; Daniele Cesari; Carmelina Antonella Iannuzzi; Leonardo Del Porro; Francesca Pentimalli; Luca Napoliello; Silvia Boffo; Silvia Schenone; Maurizio Botta; Antonio Giordano
Ewing sarcoma (ES) is a highly aggressive bone and soft tissue cancer, representing the second most common primary malignant bone tumor in children and adolescents. Although the development of a multimodal therapy, including both local control (surgery and/or radiation) and systemic multidrug chemotherapy, has determined a significant improvement in survival, patients with metastatic and recurrent disease still face a poor prognosis. Moreover, considering that ES primarily affects young patients, there are concerns about long‐term adverse effects of the therapy. Therefore, more rational strategies, targeting specific molecular alterations underlying ES, are required. Recent studies suggest that SRC family kinases (SFKs), which are aberrantly activated in most cancer types, could represent key therapeutic targets also for ES. Here, we challenged ES cell lines with a recently developed selective SFK inhibitor (a pyrazolo[3,4‐d]pyrimidine derivative, called SI221), which was previously shown to be a valuable proapoptotic agent in other tumor types while not affecting normal cells. We observed that SI221 significantly reduced ES cell viability and proved to be more effective than the well‐known SFK inhibitor PP2. SI221 was able to induce apoptosis in ES cells and also reduced ES cell clonogenic potential. Furthermore, SI221 was also able to reduce ES cell migration. At the molecular level, our data suggest that SFK inhibition through SI221 could reduce ES cell viability at least in part by hindering an SFK‐NOTCH1 receptor‐p38 mitogen‐activated protein kinase (MAPK) axis. Overall, our study suggests a potential application of specific SFK inhibition in ES therapy. J. Cell. Physiol. 232: 129–135, 2017.
Collaboration
Dive into the Paola Indovina's collaboration.
Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
View shared research outputs