Paola Magioncalda
University of Genoa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paola Magioncalda.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Matteo Martino; Paola Magioncalda; Zirui Huang; Benedetta Conio; Niccolò Piaggio; Niall W. Duncan; Giulio Rocchi; Andrea Escelsior; Valentina Marozzi; Annemarie Wolff; Matilde Inglese; Mario Amore; Georg Northoff
Significance Depressive and manic phases in bipolar disorder show opposite constellations of affective, cognitive, and psychomotor symptoms. These may be related to disbalance between large-scale networks, such as the default-mode (DMN) and sensorimotor network (SMN) that are involved in these functions. The variability of resting-state signal amplitude—an index of neuronal activity—of large-scale networks and their balances was investigated in bipolar disorder. The DMN/SMN balance was tilted toward the DMN in depression (characterized by excessive focus on internal thought contents and psychomotor inhibition) and toward the SMN in mania (characterized by excessive focus on external environmental contents and psychomotor overexcitement). Accordingly, the contrasting symptoms of depression and mania may be related to opposite spatiotemporal patterns in the resting-state structure. Depressive and manic phases in bipolar disorder show opposite constellations of affective, cognitive, and psychomotor symptoms. At a neural level, these may be related to topographical disbalance between large-scale networks, such as the default mode network (DMN) and sensorimotor network (SMN). We investigated topographical patterns of variability in the resting-state signal—measured by fractional SD (fSD) of the BOLD signal—of the DMN and SMN (and other networks) in two frequency bands (Slow5 and Slow4) with their ratio and clinical correlations in depressed (n = 20), manic (n = 20), euthymic (n = 20) patients, and healthy controls (n = 40). After controlling for global signal changes, the topographical balance between the DMN and SMN, specifically in the lowest frequency band, as calculated by the Slow5 fSD DMN/SMN ratio, was significantly increased in depression, whereas the same ratio was significantly decreased in mania. Additionally, Slow5 variability was increased in the DMN and decreased in the SMN in depressed patients, whereas the opposite topographical pattern was observed in mania. Finally, the Slow5 fSD DMN/SMN ratio correlated positively with clinical scores of depressive symptoms and negatively with those of mania. Results were replicated in a smaller independent bipolar disorder sample. We demonstrated topographical abnormalities in frequency-specific resting-state variability in the balance between DMN and SMN with opposing patterns in depression and mania. The Slow5 DMN/SMN ratio was tilted toward the DMN in depression but was shifted toward the SMN in mania. The Slow5 fSD DMN/SMN pattern could constitute a state-biomarker in diagnosis and therapy.
Human Brain Mapping | 2015
Paola Magioncalda; Matteo Martino; Benedetta Conio; Andrea Escelsior; Niccolò Piaggio; Andrea Presta; Valentina Marozzi; Giulio Rocchi; Loris Anastasio; Linda Vassallo; Francesca Ferri; Zirui Huang; Luca Roccatagliata; Matteo Pardini; Georg Northoff; Mario Amore
Introduction: The cortical midline structures seem to be involved in the modulation of different resting state networks, such as the default mode network (DMN) and salience network (SN). Alterations in these systems, in particular in the perigenual anterior cingulate cortex (PACC), seem to play a central role in bipolar disorder (BD). However, the exact role of the PACC, and its functional connections to other midline regions (within and outside DMN) still remains unclear in BD. Methods: We investigated functional connectivity (FC), standard deviation (SD, as a measure of neuronal variability) and their correlation in bipolar patients (n = 40) versus healthy controls (n = 40), in the PACC and in its connections in different frequency bands (standard: 0.01–0.10 Hz; Slow‐5: 0.01–0.027 Hz; Slow‐4: 0.027–0.073 Hz). Finally, we studied the correlations between FC alterations and clinical‐neuropsychological parameters and we explored whether subgroups of patients in different phases of the illness present different patterns of FC abnormalities. Results: We found in BD decreased FC (especially in Slow‐5) from the PACC to other regions located predominantly in the posterior DMN (such as the posterior cingulate cortex (PCC) and inferior temporal gyrus) and in the SN (such as the supragenual anterior cingulate cortex and ventrolateral prefrontal cortex). Second, we found in BD a decoupling between PACC‐based FC and variability in the various target regions (without alteration in variability itself). Finally, in our subgroups explorative analysis, we found a decrease in FC between the PACC and supragenual ACC (in depressive phase) and between the PACC and PCC (in manic phase). Conclusions: These findings suggest that in BD the communication, that is, information transfer, between the different cortical midline regions within the cingulate gyrus does not seem to work properly. This may result in dysbalance between different resting state networks like the DMN and SN. A deficit in the anterior DMN‐SN connectivity could lead to an abnormal shifting toward the DMN, while a deficit in the anterior DMN‐posterior DMN connectivity could lead to an abnormal shifting toward the SN, resulting in excessive focusing on internal contents and reduced transition from idea to action or in excessive focusing on external contents and increased transition from idea to action, respectively, which could represent central dimensions of depression and mania. If confirmed, they could represent diagnostic markers in BD. Hum Brain Mapp 36:666–682, 2015.
Schizophrenia Bulletin | 2018
Matteo Martino; Paola Magioncalda; Hua Yu; Xiaojing Li; Qiang Wang; Yajing Meng; Wei Deng; Yinfei Li; Mingli Li; Xiaohong Ma; Timothy Joseph Lane; Niall W. Duncan; Georg Northoff; Tao Li
Objective The dopamine hypothesis is one of the most influential theories of the neurobiological background of schizophrenia (SCZ). However, direct evidence for abnormal dopamine-related subcortical-cortical circuitry disconnectivity is still lacking. The aim of this study was therefore to test dopamine-related substantia nigra (SN)-based striato-thalamo-cortical resting-state functional connectivity (FC) in SCZ. Method Based on our a priori hypothesis, we analyzed a large sample resting-state functional magnetic resonance imaging (fMRI) dataset from first-episode drug-naïve SCZ patients (n = 112) and healthy controls (n = 82) using the SN as the seed region for an investigation of striato-thalamo-cortical FC. This was done in the standard band of slow frequency oscillations and then in its subfrequency bands (Slow4 and Slow5). Results: The analysis showed in SCZ: (1) reciprocal functional hypo-connectivity between SN and striatum, with differential patterns for Slow5 and Slow4; (2) functional hypo-connectivity between striatum and thalamus, as well as functional hyper-connectivity between thalamus and sensorimotor cortical areas, specifically in Slow4; (3) correlation of thalamo-sensorimotor functional hyper-connectivity with psychopathological symptoms. Conclusions: We demonstrate abnormal dopamine-related SN-based striato-thalamo-cortical FC in slow frequency oscillations in first-episode drug-naive SCZ. This suggests that altered dopaminergic function in the SN leads to abnormal neuronal synchronization (as indexed by FC) within subcortical-cortical circuitry, complementing the dopamine hypothesis in SCZ on the regional level of resting-state activity.
Journal of Affective Disorders | 2016
Paola Magioncalda; Matteo Martino; Benedetta Conio; Niccolò Piaggio; Roxana Teodorescu; Andrea Escelsior; Valentina Marozzi; Giulio Rocchi; Luca Roccatagliata; Georg Northoff; Matilde Inglese; Mario Amore
BACKGROUND In recent years, diffusion tensor imaging (DTI) studies have detected subtle microstructural abnormalities of white matter (WM) in type I bipolar disorder (BD). However, WM alterations in the different phases of BD remain to be explored. The aims of this study is to investigate the WM alterations in the various phases of illness and their correlations with clinical and neurocognitive features. METHODS We investigated the DTI-derived fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD) in patients with type I BD (n=61) subdivided in manic (n=21), depressive (n=20) and euthymic phases (n=20) vs. healthy controls (n=42), using a tract-based spatial statistics (TBSS) approach. Then, we investigated whether the subgroups of patients in the various phases of illness present different patterns of WM abnormalities. Finally we studied the correlations between WM alterations and clinical-cognitive parameters. RESULTS We found a widespread alteration in WM microstructure (decrease in FA and increase in MD and RD) in BD when compared to controls. The various subgroups of BD showed different spatial patterns of WM alterations. A gradient of increasing WM abnormalities from the euthymic (low degree and localized WM alterations mainly in the midline structures) to the manic (more diffuse WM alterations affecting both midline and lateral structures) and, finally, to the depressive phase (high degree and widespread WM alterations), was found. Furthermore, the WM diffuse alterations correlated with cognitive deficits in BD, such as decreased fluency prompted by letter and decreased hits and increased omission errors at the continuous performance test. LIMITATIONS Patients under treatment. CONCLUSIONS The WM alterations in type I BD showed different spatial patterns in the various phases of illness, mainly affecting the active phases, and correlated with some cognitive deficits. This suggests a complex trait- and state-dependent pathogenesis of WM abnormalities in BD.
Acta Psychiatrica Scandinavica | 2016
Matteo Martino; Paola Magioncalda; C. Saiote; Benedetta Conio; Andrea Escelsior; Giulio Rocchi; Niccolò Piaggio; Valentina Marozzi; Zirui Huang; Francesca Ferri; Mario Amore; Matilde Inglese; Georg Northoff
The objective of the study was to investigate the relationship between structural connectivity (SC) and functional connectivity (FC) in the cingulum in bipolar disorder (BD) and its various phases.
Scientific Reports | 2017
Maria Petracca; Catarina Saiote; Heidi Bender; Franchesca Arias; Colleen Farrell; Paola Magioncalda; Matteo Martino; Aaron E. Miller; Georg Northoff; Fred D. Lublin; Matilde Inglese
We aimed to investigate functional connectivity and variability across multiple frequency bands in brain networks underlying cognitive deficits in primary-progressive multiple sclerosis (PP-MS) and to explore how they are affected by the presence of cortical lesions (CLs). We analyzed functional connectivity and variability (measured as the standard deviation of BOLD signal amplitude) in resting state networks (RSNs) associated with cognitive deficits in different frequency bands in 25 PP-MS patients (12 M, mean age 50.9 ± 10.5 years) and 20 healthy subjects (9 M, mean age 51.0 ± 9.8 years). We confirmed the presence of a widespread cognitive deterioration in PP-MS patients, with main involvement of visuo-spatial and executive domains. Cognitively impaired patients showed increased variability, reduced synchronicity between networks involved in the control of cognitive macro-domains and hyper-synchronicity limited to the connections between networks functionally more segregated. CL volume was higher in patients with cognitive impairment and was correlated with functional connectivity and variability. We demonstrate, for the first time, that a functional reorganization characterized by hypo-synchronicity of functionally-related/hyper-synchronicity of functionally-segregated large scale networks and an abnormal pattern of neural activity underlie cognitive dysfunction in PP-MS, and that CLs possibly play a role in variability and functional connectivity abnormalities.
Brain and behavior | 2016
Paola Magioncalda; Matteo Martino; Benjamin A. Ely; Matilde Inglese; Emily R. Stern
In recent years, diffusion tensor imaging (DTI) studies have detected subtle microstructural abnormalities of white matter (WM) in obsessive–compulsive disorder (OCD). However, findings have been inconsistent, and it is unclear whether WM abnormalities are related to cognitive processes. The aim of this study was to explore the relationship of WM alterations with cognitive variables in OCD in order to investigate the structural correlates of behaviorally relevant features of the disorder.
Schizophrenia Bulletin | 2018
Jianfeng Zhang; Paola Magioncalda; Zirui Huang; Zhonglin Tan; Xiwen Hu; Zhiguo Hu; Benedetta Conio; Mario Amore; Matilde Inglese; Matteo Martino; Georg Northoff
Bipolar disorder (BD) is a complex psychiatric disorder characterized by dominant symptom swings across different phases (manic, depressive, and euthymic). Different symptoms in BD such as abnormal episodic memory recall and psychomotor activity have been related to alterations in different regions, ie, hippocampus and motor cortex. How the abnormal regional distribution of neuronal activity relates to specific symptoms remains unclear, however. One possible neuronal mechanism of the relationship is the alteration of the global distribution of neuronal activity manifested in specific local regions; this can be measured as the correlation between the global signal (GS) and local regions. To understand the GS and its relationship to psychopathological symptoms, we here investigated the alteration of both GS variance and its regional topography in healthy controls and 3 phases of BD. We found that the variance of GS showed no significant difference between the 4 groups. In contrast, the GS topography was significantly altered in the different phases of BD, ie, the regions showing abnormally strong topographical GS contribution changed from hippocampus (and parahippocampus/fusiform gyrus) in depression to motor cortex in mania. Importantly, topographical GS changes in these regions correlated with psychopathological measures in both depression and mania. Taken together, our findings demonstrate the central importance of GS topography for psychopathological symptoms. This sheds lights on the neuronal mechanisms of specific psychopathological symptoms in BD, and its relevance in the relationship between global and local neuronal activities for behavior in general.
Psychiatry Research-neuroimaging | 2018
Niccolò Piaggio; Simona Schiavi; Matteo Martino; Giulia Bommarito; Matilde Inglese; Paola Magioncalda
Bipolar disorder (BD), especially in its active phases, has shown some neuroimaging and immunological similarities with multiple sclerosis (MS). The objective of this study was to compare white matter (WM) alterations in BD patients in manic phase (M-BD) and MS patients at early stage of disease and with low lesion burden. We compared diffusion tensor imaging (DTI)-derived fractional anisotropy (FA), mean diffusivity (MD) and radial diffusivity (RD) in a priori selected WM regions (i.e., corpus callosum and cingulum) betwixt 23 M-BD, 23 MS patients and 46 healthy controls. Both M-BD and MS showed WM changes in the corpus callosum, which, however, showed a greater impairment in MS patients. However, considering the different sub-regions of corpus callosum separately (i.e., genu, body, splenium), M-BD and MS presented an opposite pattern in spatial distribution of WM microstructure alterations, with a greater impairment in the anterior region in M-BD and in the posterior region in MS. Common features as well as divergent patterns in DTI changes are detected in M-BD and early MS, prompting a deeper investigation of analogies and differences in WM and immunological alterations of these disorders.
Human Brain Mapping | 2018
Benedetta Conio; Paola Magioncalda; Matteo Martino; Shankar Tumati; Laura Capobianco; Andrea Escelsior; Giulia Adavastro; Daniel Russo; Mario Amore; Matilde Inglese; Georg Northoff
Affective temperaments have been described since the early 20th century and may play a central role in psychiatric illnesses, such as bipolar disorder (BD). However, the neuronal basis of temperament is still unclear. We investigated the relationship of temperament with neuronal variability in the resting state signal—measured by fractional standard deviation (fSD) of Blood‐Oxygen‐Level Dependent signal—of the different large‐scale networks, that is, sensorimotor network (SMN), along with default‐mode, salience and central executive networks, in standard frequency band (SFB) and its sub‐frequencies slow4 and slow5, in a large sample of healthy subject (HC, n = 109), as well as in the various temperamental subgroups (i.e., cyclothymic, hyperthymic, depressive, and irritable). A replication study on an independent dataset of 121 HC was then performed. SMN fSD positively correlated with cyclothymic z‐score and was significantly increased in the cyclothymic temperament compared to the depressive temperament subgroups, in both SFB and slow4. We replicated our findings in the independent dataset. A relationship between cyclothymic temperament and neuronal variability, an index of intrinsic neuronal activity, in the SMN was found. Cyclothymic and depressive temperaments were associated with opposite changes in the SMN variability, resembling changes previously described in manic and depressive phases of BD. These findings shed a novel light on the neural basis of affective temperament and also carry important implications for the understanding of a potential dimensional continuum between affective temperaments and BD, on both psychological and neuronal levels.