Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paola Melotti is active.

Publication


Featured researches published by Paola Melotti.


The Lancet Respiratory Medicine | 2014

Ataluren for the treatment of nonsense-mutation cystic fibrosis: a randomised, double-blind, placebo-controlled phase 3 trial

Eitan Kerem; Michael W. Konstan; Kris De Boeck; Frank J. Accurso; Isabelle Sermet-Gaudelus; Michael Wilschanski; J. Stuart Elborn; Paola Melotti; I. Bronsveld; Isabelle Fajac; Anne Malfroot; Daniel B. Rosenbluth; Patricia A Walker; Susanna A. McColley; Christiane Knoop; Serena Quattrucci; Ernst Rietschel; Pamela L. Zeitlin; Jay Barth; Gary L. Elfring; Ellen Welch; Arthur Branstrom; Robert Spiegel; Stuart W. Peltz; Temitayo Ajayi; Steven M. Rowe

BACKGROUND Ataluren was developed to restore functional protein production in genetic disorders caused by nonsense mutations, which are the cause of cystic fibrosis in 10% of patients. This trial was designed to assess the efficacy and safety of ataluren in patients with nonsense-mutation cystic fibrosis. METHODS This randomised, double-blind, placebo-controlled, phase 3 study enrolled patients from 36 sites in 11 countries in North America and Europe. Eligible patients with nonsense-mutation cystic fibrosis (aged ≥ 6 years; abnormal nasal potential difference; sweat chloride >40 mmol/L; forced expiratory volume in 1 s [FEV1] ≥ 40% and ≤ 90%) were randomly assigned by interactive response technology to receive oral ataluren (10 mg/kg in morning, 10 mg/kg midday, and 20 mg/kg in evening) or matching placebo for 48 weeks. Randomisation used a block size of four, stratified by age, chronic inhaled antibiotic use, and percent-predicted FEV1. The primary endpoint was relative change in percent-predicted FEV1 from baseline to week 48, analysed in all patients with a post-baseline spirometry measurement. This study is registered with ClinicalTrials.gov, number NCT00803205. FINDINGS Between Sept 8, 2009, and Nov 30, 2010, 238 patients were randomly assigned, of whom 116 in each treatment group had a valid post-baseline spirometry measurement. Relative change from baseline in percent-predicted FEV1 did not differ significantly between ataluren and placebo at week 48 (-2.5% vs -5.5%; difference 3.0% [95% CI -0.8 to 6.3]; p=0.12). The number of pulmonary exacerbations did not differ significantly between treatment groups (rate ratio 0.77 [95% CI 0.57-1.05]; p=0.0992). However, post-hoc analysis of the subgroup of patients not using chronic inhaled tobramycin showed a 5.7% difference (95% CI 1.5-10.1) in relative change from baseline in percent-predicted FEV1 between the ataluren and placebo groups at week 48 (-0.7% [-4.0 to 2.1] vs -6.4% [-9.8 to -3.7]; nominal p=0.0082), and fewer pulmonary exacerbations in the ataluern group (1.42 events [0.9-1.9] vs 2.18 events [1.6-2.7]; rate ratio 0.60 [0.42-0.86]; nominal p=0.0061). Safety profiles were generally similar for ataluren and placebo, except for the occurrence of increased creatinine concentrations (ie, acute kidney injury), which occurred in 18 (15%) of 118 patients in the ataluren group compared with one (<1%) of 120 patients in the placebo group. No life-threatening adverse events or deaths were reported in either group. INTERPRETATION Although ataluren did not improve lung function in the overall population of nonsense-mutation cystic fibrosis patients who received this treatment, it might be beneficial for patients not taking chronic inhaled tobramycin. FUNDING PTC Therapeutics, Cystic Fibrosis Foundation, US Food and Drug Administrations Office of Orphan Products Development, and the National Institutes of Health.


Antimicrobial Agents and Chemotherapy | 2007

Azithromycin Selectively Reduces Tumor Necrosis Factor Alpha Levels in Cystic Fibrosis Airway Epithelial Cells

Cristina Cigana; Baroukh M. Assael; Paola Melotti

ABSTRACT Azithromycin (AZM) ameliorates lung function in cystic fibrosis (CF) patients. This macrolide has been suggested to have anti-inflammatory properties as well as other effects potentially relevant for therapy of CF. In this study, we utilized three CF (IB3-1, 16HBE14o- AS3, and 2CFSMEo-) and two isogenic non-CF (C38 and 16HBE14o- S1) airway epithelial cell lines to investigate whether AZM could reduce tumor necrosis factor alpha (TNF-α) mRNA and protein levels by real-time quantitative PCR analysis and an enzyme-linked immunosorbent assay (ELISA), respectively. We studied the effects on the DNA binding of NF-κB and specificity protein 1 (Sp1) by an ELISA. Non-CF cells express significantly lower TNF-α mRNA and protein levels than an isogenic CF cell line. In CF cells, AZM treatment causes a 30% reduction of TNF-α mRNA levels (P < 0.05) and a 45% decrease in TNF-α secretion (P < 0.05), reaching approximately the levels of the untreated isogenic non-CF cells. In CF cells, NF-κB and Sp1 DNA binding activities were also significantly decreased (about 45 and 60%, respectively; P < 0.05) after AZM treatment. Josamycin, a macrolide lacking clinically described anti-inflammatory effects, was ineffective. Finally, AZM did not alter the mRNA expression levels of interleukin-6, a proinflammatory molecule not differentially expressed in CF and isogenic non-CF cells. The results of our study support the anti-inflammatory activities of this macrolide, since we show that AZM reduced the levels of TNF-α and propose inhibitions of NF-κB and Sp1 DNA binding as possible mechanisms of this effect.


Journal of Cystic Fibrosis | 2011

New clinical diagnostic procedures for cystic fibrosis in Europe

K. De Boeck; Nico Derichs; Isabelle Fajac; H. R. De Jonge; I. Bronsveld; Isabelle Sermet; F. Vermeulen; David N. Sheppard; Harry Cuppens; M.J. Hug; Paola Melotti; Peter G. Middleton; Michael Wilschanski

In the majority of cases, there is no difficulty in diagnosing Cystic Fibrosis (CF). However, there may be wide variation in signs and symptoms between individuals which encourage the scientific community to constantly improve the diagnostic tests available and develop better methods to come to a final diagnosis in patients with milder phenotypes. This paper is the result of discussions held at meetings of the European Cystic Fibrosis Society Diagnostic Network supported by EuroCareCF. CFTR bioassays in the nasal epithelium (nasal potential difference measurements) and the rectal mucosa (intestinal current measurements) are discussed in detail including efforts to standardize the techniques across Europe. New approaches to evaluate the sweat gland, future of genetic testing and methods on the horizon like CFTR expression in human leucocytes and erythrocytes are discussed briefly.


Genes and Immunity | 2010

PTX3 genetic variations affect the risk of Pseudomonas aeruginosa airway colonization in cystic fibrosis patients

M. Chiarini; C. Sabelli; Paola Melotti; C. Garlanda; G. Savoldi; C. Mazza; Rita Padoan; A. Plebani; A. Mantovani; L. D. Notarangelo; Baroukhmaurice Assael; R. Badolato

Cystic fibrosis (CF) is a common life-threatening autosomal recessive disorder in the Caucasian population, and the gene responsible is the CF transmembrane conductance regulator (CFTR). Patients with CF have repeated bacterial infection of the airways caused by Pseudomonas aeruginosa (PA), which is one of the predominant pathogen, and endobronchial chronic infection represents a major cause of morbidity and mortality. Pentraxin 3 (PTX3) is a gene that encodes the antimicrobial protein, PTX3, which is believed to have an important role in innate immunity of lung. To address the role of PTX3 in the risk of PA lung colonization, we investigated five single nucleotide polymorphisms of PTX3 gene in 172 Caucasian CF patients who were homozygous for the F508del mutation. We observed that PTX3 haplotype frequencies were significantly different between patients with PA colonization, as compared with noncolonized patients. Moreover, a protective effect was found in association with a specific haplotype (odds ratio 0.524). Our data suggest that variations within PTX3 affect lung colonization of Pseudomonas in patients with CF.


Journal of Virology | 2006

Interaction of Adenovirus Type 5 Fiber with the Coxsackievirus and Adenovirus Receptor Activates Inflammatory Response in Human Respiratory Cells

Anna Tamanini; Elena Nicolis; Alberto Bonizzato; Valentino Bezzerri; Paola Melotti; Baroukh M. Assael; Giulio Cabrini

ABSTRACT The innate immune response to adenovirus (Ad)-derived gene transfer vectors has been shown to initiate immediately after interaction of Ad with respiratory epithelial cells, through the induction of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and JNK mitogen-activated protein kinase (MAPK), nuclear factor κB (NF-κB), and different proinflammatory genes. Ad serotypes 2 or 5 (Ad2/5) enter respiratory epithelia after initial binding of fiber with the coxsackievirus-adenovirus receptor (CAR) or, alternatively, with cell surface heparan sulfate glycosaminoglycans. Ad2/5 internalization is triggered by binding of penton base to cellular RGD-binding integrins. Here we investigated the role of the Ad5 surface domain proteins constituting the vector capsid, namely, the fiber, the penton base, and the hexon, on the transmembrane signals leading to the transcription of the different proinflammatory genes in the human respiratory A549 cell line. Interaction of Ad fiber with CAR activates both ERK1/2 and JNK MAPK and the nuclear translocation of NF-κB, whereas no activation was observed after exposing A549 cells to penton base and hexon proteins. Moreover, interaction of Ad fiber with CAR, but not heparan sulfate proteoglycans, promotes transcription of the chemokines interleukin-8, GRO-α, GRO-γ, RANTES, and interferon-inducible protein 10. These results identify the binding of Ad5 fiber with the cellular CAR as a key proinflammatory activation event in epithelial respiratory cells that is independent of the transcription of Ad5 genes.


PLOS ONE | 2011

Defective CFTR Expression and Function Are Detectable in Blood Monocytes: Development of a New Blood Test for Cystic Fibrosis

Claudio Sorio; Mario Buffelli; Chiara Angiari; Michele Ettorre; Jan Johansson; Marzia Vezzalini; Laura Viviani; Mario Ricciardi; Genny Verzè; Baroukh M. Assael; Paola Melotti

Background Evaluation of cystic fibrosis transmembrane conductance regulator (CFTR) functional activity to assess new therapies and define diagnosis of cystic fibrosis (CF) is cumbersome. It is known that leukocytes express detectable levels of CFTR but the molecule has not been characterized in these cells. In this study we aim at setting up and validating a blood test to evaluate CFTR expression and function in leukocytes. Description Western blot, PCR, immunofluorescence and cell membrane depolarization analysis by single-cell fluorescence imaging, using the potential-sensitive DiSBAC2(3) probe were utilized. Expression of PKA phosphorylated, cell membrane-localized CFTR was detected in non-CF monocytes, being undetectable or present in truncated form in monocytes derived from CF patients presenting with nonsense mutations. CFTR agonist administration induced membrane depolarization in monocytes isolated from non-CF donors (31 subjects) and, to a lesser extent, obligate CFTR heterozygous carriers (HTZ: 15 subjects), but it failed in monocytes from CF patients (44 subjects). We propose an index, which values in CF patients are significantly (p<0.001) lower than in the other two groups. Nasal Potential Difference, measured in selected subjects had concordant results with monocytes assay (Kappa statistic 0.93, 95%CI: 0.80–1.00). Results and Significance CFTR is detectable and is functional in human monocytes. We also showed that CFTR-associated activity can be evaluated in 5 ml of peripheral blood and devise an index potentially applicable for diagnostic purposes and both basic and translational research: from drug development to evaluation of functional outcomes in clinical trials.


Journal of Cystic Fibrosis | 2014

Nasal potential difference measurements in diagnosis of cystic fibrosis: An international survey

Lutz Naehrlich; Manfred Ballmann; Jane C. Davies; Nico Derichs; Tanja Gonska; Lena Hjelte; Silke van Konigsbruggen-Rietschel; Teresinha Leal; Paola Melotti; Peter G. Middleton; Burkhard Tümmler; F. Vermeulen; Michael Wilschanski

BACKGROUND The role of nasal potential difference (NPD) measurement as a diagnostic test for cystic fibrosis (CF) is a subject of global controversy because of the lack of validation studies, clear reference values, and standardized protocols for diagnostic NPD. METHODS To determine diagnostic NPD frequency, protocols, interpretation, and rater agreement, we surveyed the 18 NPD centres of the European Cystic Fibrosis Society Diagnostic Network Working Group. RESULTS Fifteen centres reported performing 373 diagnostic NPDs in 2012. Most use the CFF-TDN-SOP (67%) and the chloride-free + isoproterenol response of the side with the largest response (47%) as diagnostic criteria and use centre-specific reference ranges. Rater agreement for five NPD tracings - in general - was good, but poor in tracings with different responses between the two nostrils. CONCLUSIONS NPD is frequently used as a diagnostic and research tool for CF. Performance is highly standardized, centre-specific reference ranges are established, and rater agreement - in general - is good. Centre-independent diagnostic criteria and reference ranges must be defined by multicentre validation studies to improve standardized interpretation for diagnostic use.


Microbial Biotechnology | 2016

Biogenic selenium nanoparticles: characterization, antimicrobial activity and effects on human dendritic cells and fibroblasts

Eleonora Cremonini; Emanuele Zonaro; Marta Donini; Silvia Lampis; Marzia Boaretti; Stefano Dusi; Paola Melotti; Maria M. Lleo; Giovanni Vallini

Tailored nanoparticles offer a novel approach to fight antibiotic‐resistant microorganisms. We analysed biogenic selenium nanoparticles (SeNPs) of bacterial origin to determine their antimicrobial activity against selected pathogens in their planktonic and biofilm states. SeNPs synthesized by Gram‐negative Stenotrophomonas maltophilia [Sm‐SeNPs(−)] and Gram‐positive Bacillus mycoides [Bm‐SeNPs(+)] were active at low minimum inhibitory concentrations against a number of clinical isolates of Pseudomonas aeruginosa but did not inhibit clinical isolates of the yeast species Candida albicans and C. parapsilosis. However, the SeNPs were able to inhibit biofilm formation and also to disaggregate the mature glycocalyx in both P. aeruginosa and Candida spp. The Sm‐SeNPs(−) and Bm‐SeNPs(+) both achieved much stronger antimicrobial effects than synthetic selenium nanoparticles (Ch‐SeNPs). Dendritic cells and fibroblasts exposed to Sm‐SeNPs(−), Bm‐SeNPs(+) and Ch‐SeNPs did not show any loss of cell viability, any increase in the release of reactive oxygen species or any significant increase in the secretion of pro‐inflammatory and immunostimulatory cytokines. Biogenic SeNPs therefore appear to be reliable candidates for safe medical applications, alone or in association with traditional antibiotics, to inhibit the growth of clinical isolates of P. aeruginosa or to facilitate the penetration of P. aeruginosa and Candida spp. biofilms by antimicrobial agents.


PLOS ONE | 2012

Contribution by Polymorphonucleate Granulocytes to Elevated Gamma-Glutamyltransferase in Cystic Fibrosis Sputum

Alessandro Corti; Maria Franzini; Silvana Cianchetti; Gabriella Bergamini; Evelina Lorenzini; Paola Melotti; Aldo Paolicchi; Pierluigi Paggiaro; Alfonso Pompella

Background Cystic fibrosis (CF) is an autosomal recessive disorder characterized by a chronic neutrophilic airways inflammation, increasing levels of oxidative stress and reduced levels of antioxidants such as glutathione (GSH). Gamma-glutamyltransferase (GGT), an enzyme induced by oxidative stress and involved in the catabolism of GSH and its derivatives, is increased in the airways of CF patients with inflammation, but the possible implications of its increase have not yet been investigated in detail. Principal Findings The present study was aimed to evaluate the origin and the biochemical characteristics of the GGT detectable in CF sputum. We found GGT activity both in neutrophils and in the fluid, the latter significantly correlating with myeloperoxidase expression. In neutrophils, GGT was associated with intracellular granules. In the fluid, gel-filtration chromatography showed the presence of two distinct GGT fractions, the first corresponding to the human plasma b-GGT fraction, the other to the free enzyme. The same fractions were also observed in the supernatant of ionomycin and fMLP-activated neutrophils. Western blot analysis confirmed the presence of a single band of GGT immunoreactive peptide in the CF sputum samples and in isolated neutrophils. Conclusions In conclusion, our data indicate that neutrophils are able to transport and release GGT, thus increasing GGT activity in CF sputum. The prompt release of GGT may have consequences on all GGT substrates, including major inflammatory mediators such as S-nitrosoglutathione and leukotrienes, and could participate in early modulation of inflammatory response.


American Journal of Respiratory Cell and Molecular Biology | 2009

Effects of Azithromycin on Glutathione S-Transferases in Cystic Fibrosis Airway Cells

Gabriella Bergamini; Cristina Cigana; Claudio Sorio; Marco Della Peruta; Alfonso Pompella; Alessandro Corti; Francxois A. Huaux; Teresinha Leal; Baroukh M. Assael; Paola Melotti

Anti-inflammatory properties of azithromycin (AZM) have been proposed as possible mechanisms of clinical beneficial effects in patients with cystic fibrosis (CF). Altered glutathione (GSH) transport in cystic fibrosis transmembrane regulator protein (CFTR)-deficient cells leads to the occurrence of oxidative stress that finally induces glutathione S-transferase (GST) activity. The present investigation was aimed to verify the effects of AZM on GST activity and expression in CF airway cells in vitro and in vivo. AZM exposure significantly decreased GSTT1 and GSTM1 mRNA and protein expression in IB3-1, restoring the levels to those observed in non-CF C38 cells, which also express lower levels of gamma-glutamyltransferase (GGT) activity than IB3-1. In another CF cell line, 2CFSMEo-, AZM produced 45% reduction in GSTT1 and GSTM1 mRNA levels. AZM reduced GST activity by approximately 25% and 40% in IB3-1 and 2CFSMEo- cells, respectively. GSTP1 was similarly expressed in all CF and non-CF cells and was unaffected by AZM. The anti-inflammatory cytokine IL-10 down-modulated GST activity at similar levels, supporting a link between GST inhibition and anti-inflammatory properties of AZM. In bronchoalveolar lavage fluid of CF mice homozygous for the F508 del mutation, GSTM1 protein levels were undetectable after AZM treatment. The association between increased GST expression and activity, together with its reversal by AZM treatment in vitro and in vivo, suggest novel antioxidant properties for this drug. The issue whether decreased GST activity may directly concur to anti-inflammatory properties of AZM or is rather a marker of the oxidative status of CF cells will require additional studies.

Collaboration


Dive into the Paola Melotti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cristina Cigana

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Teresinha Leal

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandra Bragonzi

Vita-Salute San Raffaele University

View shared research outputs
Researchain Logo
Decentralizing Knowledge