Paola Petrucci
Istituto Superiore di Sanità
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paola Petrucci.
Infection and Immunity | 2007
Serena Ammendola; Paolo Pasquali; Claudia Pistoia; Paola Petrucci; Patrizia Petrarca; Giuseppe Rotilio; Andrea Battistoni
ABSTRACT To investigate the relevance of zinc in host-pathogen interactions, we have constructed Salmonella enterica mutant strains in which the znuA gene, which encodes the periplasmic component of the ZnuABC high-affinity Zn2+ transporter, was deleted. This mutation does not alter the ability of Salmonella to grow in rich media but drastically reduces its ability to multiply in media deprived of zinc. In agreement with this phenotype, ZnuA accumulates only in bacteria cultivated in environments poor in zinc. In spite of the nearly millimolar intracellular concentration of zinc, we have found that znuA is highly expressed in intracellular salmonellae recovered either from cultivated cells or from the spleens of infected mice. We have also observed that znuA mutants are impaired in their ability to grow in Caco-2 epithelial cells and that bacteria starved for zinc display decreased ability to multiply in phagocytes. A dramatic reduction in the pathogenicity of the znuA mutants was observed in Salmonella-susceptible (BALB/c) or Salmonella-resistant (DBA-2) mice infected intraperitoneally or orally. This study shows that the amount of free metals available for bacterial growth within the infected animal is limited, despite the apparent elevated concentration of free metals within cells and in plasma and suggests that Salmonella exploits the ZnuABC zinc transporter to maximize zinc availability in such conditions. These results shed new light on the complex functions of zinc in vertebrate and bacterial physiology and pave the way for a better comprehension of pathogenic mechanisms in Salmonella infections.
Vaccine | 2008
Paolo Pasquali; Serena Ammendola; Claudia Pistoia; Paola Petrucci; Michela Tarantino; C. Valente; Maria Luisa Marenzoni; Giuseppe Rotilio; Andrea Battistoni
Salmonella enterica has long been recognised as an important zoonotic pathogen of economic significance, both in animals and humans. We have recently shown that inactivation of the ZnuABC high affinity zinc transporter significantly affects the pathogenicity of S. enterica, likely due to zinc shortage in the eukaryotic tissues. Here, we demonstrate that a S. enterica serovar Typhimurium znuABC deleted strain is able to induce a short lasting infection in mice. On the same time, it primes a cell-mediated immune response, which confers a solid and durable immune-based protection against challenge infections with virulent strains of S. Typhimurium. These findings suggest the possibility to explore the use of S. enterica ZnuABC deleted mutants for the production on novel vaccines.
Infection and Immunity | 2005
Rosanna Adone; Franco Ciuchini; C. Marianelli; M. Tarantino; Claudia Pistoia; G. Marcon; Paola Petrucci; M. Francia; G. Riccardi; Paolo Pasquali
ABSTRACT Vaccination against Brucella infections in animals is usually performed by administration of live attenuated smooth B. abortus strain S19 and B. melitensis strain Rev1. They are proven effective vaccines against B. abortus in cattle and against B. melitensis and B. ovis in sheep and goats, respectively. However, both vaccines have the main drawback of inducing O-polysaccharide-specific antibodies that interfere with serologic diagnosis of disease. In addition, they retain residual virulence, being a cause of abortion in pregnant animals and infection in humans. To overcome these problems, one approach is to develop defined rough mutant Brucella strains lacking O antigen of lipopolysaccharide. B. abortus rough strain RB51, a rifampin-resistant mutant of virulent strain B. abortus 2308, is used as a vaccine against B. abortus infection in cattle in some countries. However, RB51 is not effective in sheep, and there is only preliminary evidence that it is effective in goats. In this study, we tested the efficacies of six rifampin-resistant rough strains of B. melitensis in protecting BALB/c mice exposed to B. melitensis infection. The protective properties, as well as both humoral and cellular immune responses, were assessed in comparison with those provided by B. melitensis Rev1 and B. abortus RB51 vaccines. The results indicated that these rough mutants were able to induce a very good level of protection against B. melitensis infection, similar to that provided by Rev1 and superior to that of RB51, without inducing antibodies to O antigen. In addition, all B. melitensis mutants were able to stimulate good production of gamma interferon. The characteristics of these strains encourage further evaluation of them as alternative vaccines to Rev1 in primary host species.
Infection and Immunity | 2003
Paolo Pasquali; Adone Rosanna; Claudia Pistoia; Paola Petrucci; Franco Ciuchini
ABSTRACT Brucellae are gram-negative, facultative intracellular bacteria which are one of the most common causes of abortion in animals. In addition, they are the source of a severe zoonosis. In this trial, we evaluated the effect of oral inoculation of Brucella abortus RB51 in mice against a challenge infection with B. abortus 2308. First, we showed that a gastric acid neutralization prior to the oral inoculation contributed to a more homogeneous and consistent infection with both vaccine strain B. abortus RB51 and virulent strain B. abortus 2308. Successively, we assessed the clearance and the immune response following an oral infection with B. abortus RB51. Oral inoculation gave a mild infection which was cleared 42 days after infection, and it induced a delayed humoral and cell-mediated immune response. Finally, we immunized mice by oral inoculation with B. abortus RB51, and we challenged them with the virulent strain B. abortus 2308 by an oral or intraperitoneal route 42 days after vaccination. Oral inoculation of B. abortus RB51 was able to give protection to mice infected with the virulent strain B. abortus 2308 by the oral route but not to mice infected intraperitoneally. Our results indicate that oral inoculation of mice with B. abortus RB51 is able to give a protective immunity against an oral infection with virulent strains, and this protection seems to rely on an immune response at the mucosal level.
Vaccine | 2011
Michele Pesciaroli; F. Aloisio; Serena Ammendola; Claudia Pistoia; Paola Petrucci; Michela Tarantino; Massimiliano Francia; Andrea Battistoni; Paolo Pasquali
Salmonella enterica serovar Typhimurium has long been recognised as a zoonotic pathogen of economic significance in animals and humans. Attempts to protect humans and livestock may be based on immunization with vaccines aimed to induce a protective response. We recently demonstrated that the oral administration of a Salmonella enterica serovar Typhimurium strain unable to synthesize the zinc transporter ZnuABC is able to protect mice against systemic salmonellosis induced by a virulent homologous challenge. This finding suggested that this mutant strain could represent an interesting candidate vaccine for mucosal delivery. In this study, the protective effect of this Salmonella strain was tested in a streptomycin-pretreated mouse model of salmonellosis that is distinguished by the capability of evoking typhlitis and colitis. The here reported results demonstrate that mice immunized with Salmonella enterica serovar Typhimurium (S. Typhimurium) SA186 survive to the intestinal challenge and, compared to control mice, show a reduced number of virulent bacteria in the gut, with milder signs of inflammation. This study demonstrates that the oral administration a of S. Typhimurium strain lacking ZnuABC is able to elicit an effective immune response which protects mice against intestinal S. Typhimurium infection. These results, collectively, suggest that the streptomycin-pretreated mouse model of S. typhimurium infection can represent a valuable tool to screen S. typhimurium attenuated mutant strains and potentially help to assess their protective efficacy as potential live vaccines.
Vaccine | 2013
Matteo Gradassi; Michele Pesciaroli; Nicola Martinelli; Jessica Ruggeri; Paola Petrucci; Walid Hamdy Hassan; Manuela Raffatellu; Frine Eleonora Scaglione; Serena Ammendola; Andrea Battistoni; Giovanni Loris Alborali; Paolo Pasquali
We have recently demonstrated that an attenuated strain of Salmonella enterica serovar Typhimurium unable to synthesize the zinc transporter ZnuABC (S. Typhimurium ΔznuABC), is able to protect mice against systemic and enteric salmonellosis and is safe in pigs. Here, we have tested the protective effects of S. Typhimurium ΔznuABC in pigs. Resistance to challenge with the fully virulent strain S. Typhimurium ATCC 14028 was assessed in animals vaccinated with S. Typhimurium ΔznuABC (two dosages tested), in controls vaccinated with a formalin-inactivated virulent strain and in unvaccinated controls. Clinical signs of salmonellosis, faecal shedding and bacterial colonization of organs were used to assess vaccine-induced protection. After the challenge, pigs vaccinated with the attenuated S. Typhimurium ΔznuABC strain did not display clinical signs of salmonellosis (fever or diarrhoea). The vaccine also reduced intestinal tract colonization and faecal shedding of the fully virulent Salmonella strain, as compared to control groups. S. Typhimurium ΔznuABC represents a promising candidate vaccine against salmonellosis in pigs.
Frontiers in Cellular and Infection Microbiology | 2015
Rosanna Drumo; Michele Pesciaroli; Jessica Ruggeri; Michela Tarantino; Barbara Chirullo; Claudia Pistoia; Paola Petrucci; Nicola Martinelli; Livia Moscati; Elisabetta Manuali; Silvia Pavone; Matteo Picciolini; Serena Ammendola; Gianfranco Gabai; Andrea Battistoni; Giovanni Pezzotti; Giovanni Loris Alborali; Valerio Napolioni; Paolo Pasquali; Chiara Francesca Magistrali
Salmonella enterica serovar Typhimurium is an important zoonotic gastrointestinal pathogen responsible for foodborne disease worldwide. It is a successful enteric pathogen because it has developed virulence strategies allowing it to survive in a highly inflamed intestinal environment exploiting inflammation to overcome colonization resistance provided by intestinal microbiota. In this study, we used piglets featuring an intact microbiota, which naturally develop gastroenteritis, as model for salmonellosis. We compared the effects on the intestinal microbiota induced by a wild type and an attenuated S. Typhimurium in order to evaluate whether the modifications are correlated with the virulence of the strain. This study showed that Salmonella alters microbiota in a virulence-dependent manner. We found that the wild type S. Typhimurium induced inflammation and a reduction of specific protecting microbiota species (SCFA-producing bacteria) normally involved in providing a barrier against pathogens. Both these effects could contribute to impair colonization resistance, increasing the host susceptibility to wild type S. Typhimurium colonization. In contrast, the attenuated S. Typhimurium, which is characterized by a reduced ability to colonize the intestine, and by a very mild inflammatory response, was unable to successfully sustain competition with the microbiota.
Microbes and Infection | 2010
Paolo Pasquali; Angela M. Thornton; Silvia Vendetti; Claudia Pistoia; Paola Petrucci; Michela Tarantino; Michele Pesciaroli; Franco Maria Ruggeri; Andrea Battistoni; Ethan M. Shevach
Brucellosis is one of the most common bacterial zoonoses worldwide. Infection is usually chronic and sometimes lifelong. Different mechanisms can be postulated as to the basis for the induction of the chronic status of brucellosis, but a comprehensive knowledge is still lacking. Here, we carried out a series of experiments in order to assess if the persistence of Brucella abortus could be ascribed to the effect of a down regulation of the immune response due to activity of regulatory T cells. We demonstrate that CD4+CD25+T regulatory cells are able to limit the effectiveness of CD4+T cells and are able to favor the maintenance and the progression of B. abortus infection.
Vaccine | 2012
Rosanna Adone; Massimiliano Francia; Claudia Pistoia; Paola Petrucci; Michele Pesciaroli; Paolo Pasquali
It has been demonstrated that antibodies specific for O-PS antigen of Brucella smooth strains are involved in the protective immunity of brucellosis. Since the rough strain Brucella melitensis B115 was able to protect mice against wild Brucella strains brucellosis despite the lack of anti-OPS antibodies, in this study we evaluated the biological significance of antibodies induced by this strain, directed to antigens other than O-PS, passively tranferred to untreated mice prior to infection with Brucella abortus 2308 and B. melitensis 16M virulent strains. The protective ability of specific antisera collected from mice vaccinated with B. melitensis B115, B. abortus RB51 and B. abortus S19 strains was compared. The results indicated that antibodies induced by B115 were able to confer a satisfactory protection, especially against B. abortus 2308, similar to that conferred by the antiserum S19, while the RB51 antiserum was ineffective. These findings suggest that antibodies induced by B115 could act as opsonins as well as antibodies anti-O-PS, thus triggering more efficient internalization and degradation of bacteria within phagocytes. This is the first study assessing the efficacy of antibodies directed to antigens other than O-PS in the course of brucellosis infection.
BMC Veterinary Research | 2006
Paolo Pasquali; Romolo Nonno; Maria Teresa Mandara; Michele Angelo Di Bari; Giovanni Ricci; Paola Petrucci; Silvia Capuccini; Claudia Cartoni; Agostino Macri; Umberto Agrimi
BackgroundPrion diseases are characterised by a neurodegenerative pattern in which the function of immune system remains still elusive. In the present study, we evaluate if an exogenous treatment with Interleukin-12 (IL-12) and IL-18, able to activate microglia, is able to affect scrapie pathogenesis.ResultsCytokines injected intracranially, induced a strong inflammatory response characterised by TNF-α production and microglia activation. Two groups of mice were injected intracerebrally with high dose of ME7 strain of scrapie containing IL-12 and IL-18 or sterile saline. Cytokines-treated mice showed a more pronounced accumulation of PrPSc in brain tissues at 90 days post-inoculation and a shorter mean survival times than untreated mice.ConclusionWe can conclude that intracerebral administration of IL-12 and IL-18 can modulate scrapie pathogenesis possibly through a microglia-mediated pattern.