Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paola Poli is active.

Publication


Featured researches published by Paola Poli.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2003

Effects of temperature on baseline and genotoxicant-induced DNA damage in haemocytes of Dreissena polymorpha

Annamaria Buschini; Pamela Carboni; Anna Martino; Paola Poli; Carlo Rossi

The potential application of the Comet assay for monitoring genotoxicity in the freshwater mussel Dreissena polymorpha was explored and a preliminary investigation was undertaken of the baseline levels of DNA damage in mussel haemocytes of animals kept at different temperatures. In addition, in vitro cell sensitivity against genotoxicants was assessed in relation to increasing temperatures. The mussels were kept at four different constant temperatures (4, 18, 28 and 37 degrees C) for 15 h. The haemocytes withdrawn were treated in vitro with melphalan, as a model genotoxic compound, or sodium hypochlorite, a common water disinfectant capable of producing mutagenic/carcinogenic by-products, at the established temperatures for 1h. The data obtained in vivo, in cells directly withdrawn from the mussels showed a significant (P<0.001, Students t test) inter-individual variability, probably due to genetic and epigenetic factors and an increasing amount of DNA damage at increasing temperature. Mussel haemocytes showed a clear dose-response effect after in vitro melphalan treatment. Hypochlorite treatment also significantly increased DNA migration: the damage was temperature dependent, with a similar increase at 4 and 28 degrees C and a minimum level at 18 degrees C. This study demonstrates the potential application of the Comet assay to haemocytes of D. polymorpha. However, these findings suggest that temperature could alter both DNA damage baseline levels in untreated animals and cell sensitivity towards environmental pollutants in in vitro conditions. Therefore, more information is needed about seasonal variations and the natural background levels of DNA damage in mussels living in the wild, before they are used for the monitoring of genotoxic effects in aquatic environments.


Chemosphere | 2001

Urban airborne particulate: genotoxicity evaluation of different size fractions by mutagenesis tests on microorganisms and comet assay.

Annamaria Buschini; Francesca Cassoni; Elena Anceschi; Luca Pasini; Paola Poli; Carlo Rossi

The genotoxic effects of different size fractions of airborne particulate (Total, PM10 and PM25), extracted with acetone or toluene, were evaluated by: the Ames plate test (TA98 and TA100 strains, w/o S9), gene conversion and reversion (w/o endogenous metabolic activation) in the Saccharomyces cerevisiae D7 strain, and the comet assay on human leukocytes. The data on human leukocytes confirm the sensitivity of the comet assay and its applicability to assess genotoxicity in environmental samples. The PM2.5 fraction of airborne particulate generally shows the highest concentration of DNA-damaging compounds. Genotoxic response, in all the test systems applied, is highly dependent on extraction solvent used. Acetone seems to extract compounds with more similar genotoxic responses in the three test systems used than toluene extracts. Toluene appears to extract air pollutants genotoxic on yeast and leukocytes but is mainly cytotoxic on Salmonella.


Science of The Total Environment | 2003

Evaluation of the migration of mutagens/carcinogens from PET bottles into mineral water by Tradescantia/micronuclei test, Comet assay on leukocytes and GC/MS.

Biscardi D; Silvano Monarca; R. De Fusco; Felice Senatore; Paola Poli; Annamaria Buschini; Carlo Rossi; Claudia Zani

This study monitored the release of mutagenic/carcinogenic compounds into mineral water (natural and carbonated) from polyethylene terephthalate (PET) bottles, using a plant mutagenicity test which reveals micronuclei formation in Tradescantia pollen cells (Trad/MCN test), a DNA damage assay (Comet assay) on human leukocytes and gas chromatography/mass spectrometry (GC/MS) for the characterisation of migrants. The water samples were collected at a bottling plant and stored in PET bottles for a period ranging from 1 to 12 months. Every month some samples were randomly collected and lyophilised, the residual powders were extracted with organic solvents and then analysed by GC/MS and tested for DNA damage in human leukocytes, or reconstituted with distilled water to obtain concentrates for the exposure of Tradescantia inflorescences. Micronuclei increase in pollen was found only in natural mineral water stored for 2 months. DNA-damaging activity was found in many of the natural and carbonated water samples. Spring water was negative in the plant micronuclei test and the Comet assay, whereas distributed spring water showed DNA-damaging effects, suggesting a possible introduction of genotoxins through the distribution pipelines. GC/MS analysis showed the presence in mineral water of di(2-ethylhexyl)phthalate, a nongenotoxic hepatocarcinogenic plasticizer, after 9 months of storage in PET bottles.


Biochemical Pharmacology | 2002

Bleomycin genotoxicity and amifostine (WR-2721) cell protection in normal leukocytes vs. K562 tumoral cells

Annamaria Buschini; Chiara Alessandrini; Anna Martino; Luca Pasini; Vittorio Rizzoli; Carmelo Carlo-Stella; Paola Poli; Carlo Rossi

Recent advances in chemotherapy have focused on the benefit of high dose regimens, increasing the dose intensity of conventional chemotherapy. However, unacceptable cytotoxicity and genotoxicity on normal cells often impairs the proper management of patients. Phosphoaminothiol WR-1065, the active metabolite of amifostine, appears to protect normal cells and tissues against cytotoxic exposure to radiation or chemotherapeutic agents. Nevertheless, there is disagreement in findings on amifostine protection against bleomycin-induced severe side effects which have suggested that amifostine effectiveness against bleomycin-induced genotoxicity in normal leukocytes and tumour line cells K562 be studied. DNA damage was detected by single cell gel electrophoresis (or Comet) assay, a technique able to detect DNA strand breaks, alkali-labile sites and incomplete excision repair events in individual cells and which appears to be an ideal tool for assessing variability in response of different cell types in vitro. WR-2721 appears to selectively protect healthy leukocytes but not K562 tumoral cells. On the other hand, data on the inter- and intra-individual sensitivity to bleomycin and amifostine suggest that individual metabolic/genetic differences and other factors relating to lifestyle may be responsible for response variability. Application of the Comet assay in appropriate clinical settings to test the sensitivity of patients when undergoing chemotherapy appears possible.


Environment International | 2009

Drinking water quality: An in vitro approach for the assessment of cytotoxic and genotoxic load in water sampled along distribution system

Francesca Maffei; Fabio Carbone; G. Cantelli Forti; Annamaria Buschini; Paola Poli; Carlo Rossi; Laura Marabini; Sonia Radice; E. Chiesara; Patrizia Hrelia

An in vitro approach was performed to assess the quality of drinking water collected at two treatment/distribution networks located near the source (Plant #1) and the mouth of River Po (Plant #2). The water was sampled at different points of each distribution network, before (raw water) and after the chlorine dioxide disinfection, and in two points of the pipeline system to evaluate the influence of the distribution system on the amount and quality of the disinfection by-product. Cytotoxicity and genotoxicity of water extracts were evaluated in human peripheral lymphocytes and Hep-G2 cells by the use of the micronucleus (MN) test and Comet assay. Raw water samples of both plants induced cytotoxic effects, but not the increases of MN frequency in Hep-G2 cells and in human lymphocytes. Increases of DNA damage in human leukocytes was detected by Comet assay for raw water of Plant #2 at concentration > or = 0.25 Leq/mL. The disinfection process generally has reduced the toxicity of water samples, even if potential direct DNA-damaging compounds have been detectable in drinking water samples. The proposal approach, if currently used together with chemical analysis, can contribute to improve the monitoring drinking water.


Journal of Parasitology Research | 2009

Genotoxicity Revaluation of Three Commercial Nitroheterocyclic Drugs: Nifurtimox, Benznidazole, and Metronidazole

Annamaria Buschini; Lisa Ferrarini; Susanna Franzoni; Serena Galati; Mirca Lazzaretti; Francesca Mussi; Cristina Northfleet de Albuquerque; Tânia Maria Araújo Domingues Zucchi; Paola Poli

Nitroheterocyclic compounds are widely used as therapeutic agents against a variety of protozoan and bacterial infections. However, the literature on these compounds, suspected of being carcinogens, is widely controversial. In this study, cytotoxic and genotoxic potential of three drugs, Nifurtimox (NFX), Benznidazole (BNZ), and Metronidazole (MTZ) was re-evaluated by different assays. Only NFX reduces survival rate in actively proliferating cells. The compounds are more active for base-pair substitution than frameshift induction in Salmonella; NFX and BNZ are more mutagenic than MTZ; they are widely dependent from nitroreduction whereas microsomal fraction S9 weakly affects the mutagenic potential. Comet assay detects BNZ- and NFX-induced DNA damage at doses in the range of therapeutically treated patient plasma concentration; BNZ seems to mainly act through ROS generation whereas a dose-dependent mechanism of DNA damaging is suggested for NFX. The lack of effects on mammalian cells for MTZ is confirmed also in MN assay whereas MN induction is observed for NFX and BNZ. The effects of MTZ, that shows comparatively low reduction potential, seem to be strictly dependent on anaerobic/hypoxic conditions. Both NFX and BNZ may not only lead to cellular damage of the infective agent but also interact with the DNA of mammalian cells.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2003

Evaluation of the genotoxicity induced by the fungicide fenarimol in mammalian and plant cells by use of the single-cell gel electrophoresis assay.

Paola Poli; M.A de Mello; Annamaria Buschini; V.L.S.S de Castro; F.M Restivo; Camilo Fernando Rossi; Tânia Maria Araújo Domingues Zucchi

Fenarimol, a systemic pyrimidine carbinol fungicide, is considered to be not genotoxic or weakly genotoxic, although the available toxicological data are controversial and incomplete. Our results obtained in vitro with leukocytes of two different rodent species (rat and mouse) show that fenarimol affects DNA, as detected by the single-cell gel electrophoresis (SCGE, Comet) assay. This fungicide is able to induce DNA damage in a dose-related manner, with significant effectiveness at 36 nM, but without significant interspecies differences. Simultaneous exposure of rat leukocytes to fenarimol (36-290 nM) and a model genotoxic compound (50 microg/ml bleomycin) produced a supra-additive cytotoxic and genotoxic effect. This supports previous findings suggesting possible co-toxic, co-mutagenic, cancer-promoting and co-carcinogenic potential of fenarimol, and modification of the effects of other xenobiotics found to be influenced by this agrotoxic chemical, with consequent different toxicological events. The potential for DNA strand breaks to act as a biomarker of genetic toxicity in plants in vivo was also considered, in view of the fact that higher plants represent reliable sensors in an ecosystem. Significant DNA breakage was observed in the nuclei of Impatiens balsamina leaves after in vivo treatment with fenarimol (145 nM, 1h). More than 50% of the cells showed such DNA damage.


Occupational and Environmental Medicine | 2013

Multicentre study for the evaluation of mutagenic/carcinogenic risk in nurses exposed to antineoplastic drugs: assessment of DNA damage

Annamaria Buschini; Milena Villarini; Donatella Feretti; Francesca Mussi; Luca Dominici; Ilaria Zerbini; Massimo Moretti; Elisabetta Ceretti; Roberta Bonfiglioli; Mariella Carrieri; Umberto Gelatti; Carlo Rossi; Silvano Monarca; Paola Poli

Objectives People who handle antineoplastic drugs, many of which classified as human carcinogens by International Agency for Research on Cancer, are exposed to low doses in comparison with patients; however, the long duration of exposure could lead to health effects. The aim of this work was to evaluate DNA damage in white blood cells from 63 nurses who handle antineoplastic drugs in five Italian hospitals and 74 control participants, using different versions of the Comet assay. Methods Primary DNA damage was assessed by using the alkaline version of the assay on leucocytes, whereas to detect DNA oxidative damage and cryptic lesions specifically, the Comet/ENDO III assay and the Comet/araC assay were performed on leucocytes and lymphocytes, respectively. Results In the present study, no significant DNA damage was correlated with the work shift. The exposed population did not differ significantly from the reference group with respect to DNA primary and oxidative damage in leucocytes. Strikingly, in isolated lymphocytes treated with araC, lower data dispersion as well as a significantly lower mean value for the percentage of DNA in the comet tail was observed in exposed participants as compared with the control group (p<0.05), suggesting a potential chronic exposure to crosslinking antineoplastic drugs. Conclusions Although stringent rules were adopted at national and international levels to prevent occupational exposure to antineoplastic drugs, data reported in this study support the idea that a more efficient survey on long-lasting exposures at very low concentrations is needed.


Water Research | 2008

Cytotoxic and genotoxic potential of drinking water: a comparison between two different concentration methods.

Annamaria Buschini; Federica Giordani; Claudia Pellacani; Carlo Rossi; Paola Poli

The level of exposure to hazardous compounds through drinking water is low but it is maintained throughout life, therefore representing a risk factor for human health. The use of techniques averaging the consumers exposure over time could be more useful than relying on intermittent grab samples that may misrepresent average tap water concentrations due to short-term temporal variability. In this study, we compared the induction of in vitro cytotoxic and genotoxic effects (DNA damage by the comet assay) in relation to different sampling methods, i.e. exposure over time (semipermeable membrane devices, SPMDs, exposed for 30 days) or intermittent grab samples (5 weekly water sampling, C18 concentration). Waters with different chemical characteristics were sampled to test the sensitivity of the two methods. We did not found any positive correlation between the biological findings and water chemical parameters. SPMD extracts induced a significantly greater DNA damage than C18. The different behaviour was specially found for the water samples with a low level of organic compounds and when C18 extracts were highly cytotoxic. Our findings suggest that SPMD could be of a great interest in assessing genotoxic contaminants in both raw and drinking water, with great suitability for continuous monitoring. Furthermore, the results of this study have confirmed the great importance of the biological assays in evaluating the effects of a complex mixture such as water in addition to the conventional chemical examination of water quality.


Mutation Research\/genetic Toxicology | 1992

Urban air pollution : use of different mutagenicity assays to evaluate environmental genetic hazard

Paola Poli; Annamaria Buschini; N. Campanini; M.V. Vettori; F. Cassoni; S. Cattani; Carlo Rossi

The genotoxic activities associated with airborne particulate matter collected in Parma (northern Italy) have been determined. The airborne particle extracts were tested for mutagenicity using Salmonella frameshift (TA98) and base-substitution (TA100) tester strains with and without S9 microsomal activation and Saccharomyces cerevisiae strain D7 in order to determine the frequency of mitotic gene conversion and ilv1-92 mutant reversion in cells harvested at stationary and logarithmic growth phase. The relationship between mitochondrial DNA mutations and ageing, degenerative diseases and cancer prompted us to take into account the mitochondrial informational target, i.e., the respiratory-deficient (RD) mutants. The results obtained show a variability in the response for the different test systems during different months. The Salmonella mutagenicity trend was directly correlated with carbon monoxide, nitrogen oxides (NOx) and Pb concentration in airborne particulates and inversely correlated with temperature, whereas the mitochondrial genotoxic effect was higher during spring and late summer. These data suggest that the genotoxic risk assessment is a time-dependent value strictly correlated with the evaluation system being tested.

Collaboration


Dive into the Paola Poli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge