Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paola Stefanelli is active.

Publication


Featured researches published by Paola Stefanelli.


Lancet Infectious Diseases | 2013

Predicted strain coverage of a meningococcal multicomponent vaccine (4CMenB) in Europe: a qualitative and quantitative assessment.

Ulrich Vogel; Muhamed-Kheir Taha; Julio A. Vázquez; Jamie Findlow; Heike Claus; Paola Stefanelli; Dominique A. Caugant; Paula Kriz; Raquel Abad; Stefania Bambini; Anna Carannante; Ala Eddine Deghmane; Cecilia Fazio; Matthias Frosch; Giacomo Frosi; Stefanie Gilchrist; Marzia Monica Giuliani; Eva Hong; Morgan Ledroit; Pietro G Lovaglio; Jay Lucidarme; Martin Musilek; Alessandro Muzzi; Jan Oksnes; Fabio Rigat; Luca Orlandi; Maria Stella; Danielle Thompson; Mariagrazia Pizza; Rino Rappuoli

BACKGROUND A novel multicomponent vaccine against meningococcal capsular group B (MenB) disease contains four major components: factor-H-binding protein, neisserial heparin binding antigen, neisserial adhesin A, and outer-membrane vesicles derived from the strain NZ98/254. Because the public health effect of the vaccine, 4CMenB (Novartis Vaccines and Diagnostics, Siena, Italy), is unclear, we assessed the predicted strain coverage in Europe. METHODS We assessed invasive MenB strains isolated mainly in the most recent full epidemiological year in England and Wales, France, Germany, Italy, and Norway. Meningococcal antigen typing system (MATS) results were linked to multilocus sequence typing and antigen sequence data. To investigate whether generalisation of coverage applied to the rest of Europe, we also assessed isolates from the Czech Republic and Spain. FINDINGS 1052 strains collected from July, 2007, to June, 2008, were assessed from England and Wales, France, Germany, Italy, and Norway. All MenB strains contained at least one gene encoding a major antigen in the vaccine. MATS predicted that 78% of all MenB strains would be killed by postvaccination sera (95% CI 63-90, range of point estimates 73-87% in individual country panels). Half of all strains and 64% of covered strains could be targeted by bactericidal antibodies against more than one vaccine antigen. Results for the 108 isolates from the Czech Republic and 300 from Spain were consistent with those for the other countries. INTERPRETATION MATS analysis showed that a multicomponent vaccine could protect against a substantial proportion of invasive MenB strains isolated in Europe. Monitoring of antigen expression, however, will be needed in the future. FUNDING Novartis Vaccines and Diagnostics.


Mbio | 2014

Global Population Structure and Evolution of Bordetella pertussis and Their Relationship with Vaccination

Marieke J. Bart; Simon R. Harris; Abdolreza Advani; Yoshichika Arakawa; Daniela Bottero; Valérie Bouchez; Pamela K. Cassiday; Chuen-Sheue Chiang; Tine Dalby; Norman K. Fry; María Emilia Gaillard; Marjolein van Gent; Nicole Guiso; Hans O. Hallander; Eric T. Harvill; Qiushui He; Han G. J. van der Heide; Kees Heuvelman; Daniela Hozbor; Kazunari Kamachi; Gennady I. Karataev; Ruiting Lan; Anna Lutyńska; Ram P. Maharjan; Jussi Mertsola; Tatsuo Miyamura; Sophie Octavia; Andrew Preston; Michael A. Quail; Vitali Sintchenko

ABSTRACT Bordetella pertussis causes pertussis, a respiratory disease that is most severe for infants. Vaccination was introduced in the 1950s, and in recent years, a resurgence of disease was observed worldwide, with significant mortality in infants. Possible causes for this include the switch from whole-cell vaccines (WCVs) to less effective acellular vaccines (ACVs), waning immunity, and pathogen adaptation. Pathogen adaptation is suggested by antigenic divergence between vaccine strains and circulating strains and by the emergence of strains with increased pertussis toxin production. We applied comparative genomics to a worldwide collection of 343 B. pertussis strains isolated between 1920 and 2010. The global phylogeny showed two deep branches; the largest of these contained 98% of all strains, and its expansion correlated temporally with the first descriptions of pertussis outbreaks in Europe in the 16th century. We found little evidence of recent geographical clustering of the strains within this lineage, suggesting rapid strain flow between countries. We observed that changes in genes encoding proteins implicated in protective immunity that are included in ACVs occurred after the introduction of WCVs but before the switch to ACVs. Furthermore, our analyses consistently suggested that virulence-associated genes and genes coding for surface-exposed proteins were involved in adaptation. However, many of the putative adaptive loci identified have a physiological role, and further studies of these loci may reveal less obvious ways in which B. pertussis and the host interact. This work provides insight into ways in which pathogens may adapt to vaccination and suggests ways to improve pertussis vaccines. IMPORTANCE Whooping cough is mainly caused by Bordetella pertussis, and current vaccines are targeted against this organism. Recently, there have been increasing outbreaks of whooping cough, even where vaccine coverage is high. Analysis of the genomes of 343 B. pertussis isolates from around the world over the last 100 years suggests that the organism has emerged within the last 500 years, consistent with historical records. We show that global transmission of new strains is very rapid and that the worldwide population of B. pertussis is evolving in response to vaccine introduction, potentially enabling vaccine escape. Whooping cough is mainly caused by Bordetella pertussis, and current vaccines are targeted against this organism. Recently, there have been increasing outbreaks of whooping cough, even where vaccine coverage is high. Analysis of the genomes of 343 B. pertussis isolates from around the world over the last 100 years suggests that the organism has emerged within the last 500 years, consistent with historical records. We show that global transmission of new strains is very rapid and that the worldwide population of B. pertussis is evolving in response to vaccine introduction, potentially enabling vaccine escape.


Microbiology | 1999

Antigenic variants in Bordetella pertussis strains isolated from vaccinated and unvaccinated children

Paola Mastrantonio; Patrizia Spigaglia; Hans van Oirschot; Han G. J. van der Heide; Kees Heuvelman; Paola Stefanelli; Frits R. Mooi

Bordetella pertussis shows polymorphism in two proteins, pertactin (Prn) and the pertussis toxin (PT) S1 subunit, which are important for immunity. A previous study has shown antigenic shifts in these proteins in the Dutch B. pertussis population, and it was suggested that these shifts were driven by vaccination. The recent Italian clinical trial provided the opportunity to compare the frequencies of Prn and PT S1 subunit variants in strains isolated from unvaccinated children, and from children vaccinated with two acellular and one whole-cell pertussis vaccine. Four Prn variants (Prn1, Prn2, Prn3 and Prn5) were found in the 129 strains analysed. Prn1, Prn2 and Prn3 have been described previously, whereas Prn5 is a novel variant. Prn1, Prn2, Prn3 and Prn5 were found in, respectively, 6, 41, 51 and 2% of the strains. The B. pertussis strains used to produce the vaccines administered in the clinical trial were found to produce Prn1, or a type which differed from Prn1 in one amino acid. The frequency of the Prn1 variant was found to be lowest in the strains isolated from vaccinated groups, suggesting that Prn1 strains are more affected by vaccine-induced immunity than Prn2 and Prn3 strains. Only one PT S1 type (S1A) was observed in the examined strains, which was distinct from the types produced by the vaccine strains (S1B and S1D). The S1A type also predominates in the Dutch B. pertussis population. The genetic relationship among B. pertussis strains analysed by IS1002-based DNA fingerprinting revealed that three fingerprint types predominate, representing more than 70% of the strains. Prn2 strains showed a greater variety of fingerprint types compared to Prn3, suggesting that Prn3 has emerged more recently. The results are discussed in the light of vaccine-driven evolution.


The Journal of Infectious Diseases | 2000

Cell-mediated immunity and antibody responses to Bordetella pertussis antigens in children with a history of pertussis infection and in recipients of an acellular pertussis vaccine

Clara M. Ausiello; Roberto Lande; Francesca Urbani; Beatrice Di Carlo; Paola Stefanelli; Stefania Salmaso; Paola Mastrantonio; Antonio Cassone

Cell-mediated immunity (CMI) and antibody responses to Bordetella pertussis antigens were assessed 4-6 years after primary infant immunization with diphtheria-tetanus tricomponent acellular pertussis (DTaP) or diphtheria-tetanus (DT) vaccine in a country with high endemicity of B. pertussis infection. CMI to the B. pertussis antigens (especially to the pertussis toxin [PT]) was more frequent and/or intense in DTaP than in DT recipients. No lymphoproliferation differences were found between those with and without a history of pertussis although the DT recipients produced very little interferon-gamma after antigen (particularly PT and filamentous hemagglutinin [FHA]) stimulation. In contrast, seropositivity to PT, but not to pertactin or FHA, was more frequent in DT recipients with history of pertussis than in all other subjects. Thus, years after disease or vaccination, CMI response to PT or circulating PT antibodies appears to be the main distinctive feature of pertussis-protected DTaP recipients or pertussis-affected DT recipients.


Journal of Antimicrobial Chemotherapy | 2009

Azithromycin-resistant Neisseria gonorrhoeae strains recently isolated in Italy

S. Starnino; Paola Stefanelli

OBJECTIVES The aim of this study was to characterize 22 azithromycin-resistant Neisseria gonorrhoeae isolates, collected in Italy from January 2007 through June 2008, during a study of the prevalence of antibiotic resistance. METHODS MICs of azithromycin, ciprofloxacin, ceftriaxone, penicillin and tetracycline were determined by the Etest method. Azithromycin-resistant strains (MIC > or = 1 mg/L) were genetically analysed by N. gonorrhoeae multi-antigen sequence typing (NG-MAST) and PFGE. RESULTS A total of 22 azithromycin-resistant isolates were found among the 219 collected. Five of the 22 isolates showed high-level azithromycin resistance (MICs of 128 or 256 mg/L). Sixteen of the 22 were isolated from men who have sex with men. Among the 14 sequence types (STs) found by NG-MAST, 5 STs, containing clusters of two, three or four strains, were homogeneous with respect to epidemiology and/or antibiotic susceptibility. PFGE divided the 22 strains into two main groups that were possibly related. CONCLUSIONS This is the first report of gonococci with high-level resistance to azithromycin circulating in Italy. Correlation between NG-MAST results and epidemiological data for some of the analysed strains and patients could be established. This study represents a reference point for future surveillance in Italy and suggests the need to add azithromycin to the antibiotic susceptibility panel for gonococci.


Antimicrobial Agents and Chemotherapy | 2007

Target Gene Sequencing To Characterize the Penicillin G Susceptibility of Neisseria meningitidis

Muhamed-Kheir Taha; Julio A. Vázquez; Eva Hong; Désirée E. Bennett; Sophie Bertrand; Suzana Bukovski; Mary Cafferkey; Françoise Carion; Jens Jørgen Christensen; Mathew Diggle; Giles Edwards; Rocío Enríquez; Cecilia Fazio; Matthias Frosch; Sigrid Heuberger; Steen Hoffmann; Keith A. Jolley; Marcin Kadłubowski; Amel Kechrid; Konstantinos Kesanopoulos; Paula Kriz; Lotte Lambertsen; Ileanna Levenet; Martin Musilek; Metka Paragi; Aouatef Saguer; Anna Skoczyńska; Paola Stefanelli; Sara Thulin; Georgina Tzanakaki

ABSTRACT Clinical isolates of Neisseria meningitidis with reduced susceptibility to penicillin G (intermediate isolates, PenI) harbor alterations in the penA gene encoding the penicillin binding protein 2 (PBP2). A 402-bp DNA fragment in the 3′ half of penA was sequenced from a collection of 1,670 meningococcal clinical isolates from 22 countries that spanned 60 years. Phenotyping, genotyping, and the determination of MICs of penicillin G were also performed. A total of 139 different penA alleles were detected with 38 alleles that were highly related, clustered together in maximum-likelihood analysis and corresponded to the penicillin G-susceptible isolates. The remaining 101 penA alleles were highly diverse, corresponded to different genotypes or phenotypes, and accounted for 38% of isolates, but no clonal expansion was detected. Analysis of the altered alleles that were represented by at least five isolates showed high correlation with the PenI phenotype. The deduced amino acid sequence of the corresponding PBP2 comprised five amino acid residues that were always altered. This correlation was not complete for rare alleles, suggesting that other mechanisms may also be involved in conferring reduced susceptibility to penicillin. Evidence of mosaic structures through events of interspecies recombination was also detected in altered alleles. A new website was created based on the data from this work (http://neisseria.org/nm/typing/penA ). These data argue for the use of penA sequencing to identify isolates with reduced susceptibility to penicillin G and as a tool to improve typing of meningococcal isolates, as well as to analyze DNA exchange among Neisseria species.


Infection and Immunity | 2005

Bordetella pertussis-Infected Human Monocyte-Derived Dendritic Cells Undergo Maturation and Induce Th1 Polarization and Interleukin-23 Expression

Giorgio Fedele; Paola Stefanelli; Fabiana Spensieri; Cecilia Fazio; Paola Mastrantonio; Clara M. Ausiello

ABSTRACT Bordetella pertussis, the causative agent of whooping cough, is internalized by several cell types, including epithelial cells, monocytes, and neutrophils. Although its ability to survive intracellularly is still debated, it has been proven that cell-mediated immunity (CMI) plays a pivotal role in protection. In this study we aimed to clarify the interaction of B. pertussis with human monocyte-derived dendritic cells (MDDC), evaluating the ability of the bacterium to enter MDDC, to survive intracellularly, to interfere with the maturation process and functional activities, and to influence the host immune responses. The results obtained showed that B. pertussis had a low capability to be internalized by—and to survive in—MDDC. Upon contact with the bacteria, immature MDDC were induced to undergo phenotypic maturation and acquired antigen-presenting-cell functions. Despite the high levels of interleukin-10 (IL-10) and the barely detectable levels of IL-12 induced by B. pertussis, the bacterium induced maturation of MDDC and T helper 1 (Th1) polarized effector cells. Gene expression analysis of the IL-12 cytokine family clearly demonstrated that B. pertussis induced high levels of the p40 and p19 subunits of IL-23 yet failed to induce the expression of the p35 subunit of IL-12. Overall our findings show that B. pertussis, even if it survives only briefly in MDDC, promotes the synthesis of IL-23, a newly discovered Th1 polarizing cytokine. A Th1-oriented immune response is thus allowed, relevant in the induction of an adequate CMI response, and typical of protection induced by natural infection or vaccination with whole-cell vaccines.


Infection and Immunity | 2006

Bordetella pertussis Inhibition of Interleukin-12 (IL-12) p70 in Human Monocyte-Derived Dendritic Cells Blocks IL-12 p35 through Adenylate Cyclase Toxin-Dependent Cyclic AMP Induction

Fabiana Spensieri; Giorgio Fedele; Cecilia Fazio; Maria Nasso; Paola Stefanelli; Paola Mastrantonio; Clara M. Ausiello

ABSTRACT Bordetella pertussis, the causative agent of whooping cough, possesses an array of virulence factors, including adenylate cyclase toxin (ACT), relevant in the establishment of infection. Here we better define the impact of cyclic AMP (cAMP) intoxication due to the action of ACT on dendritic cell (DC)-driven immune response, by infecting monocyte-derived DC (MDDC) with an ACT-deficient B. pertussis mutant (ACT−18HS19) or its parental strain (WT18323). Both strains induced MDDC maturation and antigen-presenting cell functions; however, only ACT−18HS19 infected MDDC-induced production of interleukin-12 (IL-12) p70. Gene expression analysis of the IL-12 cytokine family subunits revealed that both strains induced high levels of p40 (protein chain communal to IL-12 p70 and IL-23) as well as p19, a subunit of IL-23. Conversely only ACT−18HS19 infection induced consistent transcription of IL-12 p35, a subunit of IL-12 p70. Addition of the cAMP analogous d-butyril-cAMP (d-cAMP) abolished IL-12 p70 production and IL-12 p35 expression in ACT−18HS19-infected MDDC. ACT−18HS19 infection induced the expression of the transcription factors interferon regulatory factor 1 (IRF-1) and IRF-8 and of beta interferon, involved in IL-12 p35 regulation, and the expression of these genes was inhibited by d-cAMP addition and in WT18323-infected MDDC. The concomitant expression of IL-12 p70 and IL-23 allowed ACT−18HS19 to trigger a more pronounced T helper 1 polarization compared to WT18323. The present study suggests that ACT-dependent cAMP induction leads to the inhibition of pathways ultimately leading to IL-12 p35 production, thus representing a mechanism for B. pertussis to escape the host immune response.


Antimicrobial Agents and Chemotherapy | 2003

Interlaboratory comparison of agar dilution and etest methods for determining the MICs of antibiotics used in management of Neisseria meningitidis infections

Julio A. Vázquez; Luisa Arreaza; Colin Block; Ingrid Ehrhard; Stephen J. Gray; Sigrid Heuberger; Steen Hoffmann; Paula Kriz; Pierre Nicolas; Per Olcén; Anna Skoczyńska; Lodewijk Spanjaard; Paola Stefanelli; Muhamed-Kheir Taha; Georgina Tzanakaki

ABSTRACT Previous studies have shown that there is considerable variation in the methods and media used to determine the susceptibility of Neisseria meningitidis to antimicrobial agents in different countries. In this study, national and regional reference laboratories used a standardized methodology to determine the MICs of antibiotics used in the management of meningococcal infection. Fourteen laboratories participated in the study, determining the susceptibility to penicillin G, rifampin, cefotaxime, ceftriaxone, ciprofloxacin, and ofloxacin of a collection of 17 meningococci, of which 11 strains were previously defined as having intermediate resistance to penicillin (PenI) by sequencing and restriction fragment length polymorphism analysis of the penA gene. The MIC was determined by agar dilution and Etest with Mueller-Hinton agar (MH), MH supplemented with sheep blood (MH+B), and MH supplemented with heated (chocolated) blood. Several laboratories encountered problems obtaining confluent growth with unsupplemented MH. MH+B was considered to give the most congruent and reproducible results among the study laboratories. The modal MIC for MH+B for each antibiotic and method was calculated to define the MIC consensus, allowing assessment of each individual laboratorys data in relation to the others. The agreement in each antibiotic/method/medium combination was defined as the percentage of laboratories with a result within one dilution of the modal result. For the whole study, an agreement of 90.6% was observed between agar dilution and Etest methods. The agreement in each laboratory/antibiotic/method combination ranged from 98.2% to 69.7%, with six laboratories demonstrating agreement higher than 90% and 11 more than 80%. The ability of the laboratories to detect the PenI isolates ranged from 18.2% to 100%. The apparent difficulty in interpreting susceptibility to rifampin, particularly with the Etest method, is very interesting.


Clinical and Vaccine Immunology | 2012

Interlaboratory Standardization of the Sandwich Enzyme-Linked Immunosorbent Assay Designed for MATS, a Rapid, Reproducible Method for Estimating the Strain Coverage of Investigational Vaccines

Brian D. Plikaytis; Maria Stella; Giuseppe Boccadifuoco; Lisa DeTora; Mauro Agnusdei; Laura Santini; Brunella Brunelli; Luca Orlandi; Isabella Simmini; Marzia Monica Giuliani; Morgan Ledroit; Eva Hong; Muhamed-Kheir Taha; Kim Ellie; Gowrisankar Rajam; George M. Carlone; Heike Claus; Ulrich Vogel; Ray Borrow; Jamie Findlow; Stefanie Gilchrist; Paola Stefanelli; Cecilia Fazio; Anna Carannante; Jan Oksnes; Elisabeth Fritzsønn; Anne-Marie Klem; Dominique A. Caugant; Raquel Abad; Julio A. Vázquez

ABSTRACT The meningococcal antigen typing system (MATS) sandwich enzyme-linked immunosorbent assay (ELISA) was designed to measure the immunologic cross-reactivity and quantity of antigens in target strains of a pathogen. It was first used to measure the factor H-binding protein (fHbp), neisserial adhesin A (NadA), and neisserial heparin-binding antigen (NHBA) content of serogroup B meningococcal (MenB) isolates relative to a reference strain, or “relative potency” (RP). With the PorA genotype, the RPs were then used to assess strain coverage by 4CMenB, a multicomponent MenB vaccine. In preliminary studies, MATS accurately predicted killing in the serum bactericidal assay using human complement, an accepted correlate of protection for meningococcal vaccines. A study across seven laboratories assessed the reproducibility of RPs for fHbp, NadA, and NHBA and established qualification parameters for new laboratories. RPs were determined in replicate for 17 MenB reference strains at laboratories A to G. The reproducibility of RPs among laboratories and against consensus values across laboratories was evaluated using a mixed-model analysis of variance. Interlaboratory agreement was very good; the Pearson correlation coefficients, coefficients of accuracy, and concordance correlation coefficients exceeded 99%. The summary measures of reproducibility, expressed as between-laboratory coefficients of variation, were 7.85% (fHbp), 16.51% (NadA), and 12.60% (NHBA). The overall within-laboratory measures of variation adjusted for strain and laboratory were 19.8% (fHbp), 28.8% (NHBA), and 38.3% (NadA). The MATS ELISA was successfully transferred to six laboratories, and a further laboratory was successfully qualified.

Collaboration


Dive into the Paola Stefanelli's collaboration.

Top Co-Authors

Avatar

Cecilia Fazio

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Arianna Neri

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Paola Mastrantonio

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Giovanni Rezza

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Paola Vacca

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Anna Carannante

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julio A. Vázquez

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Stefania Salmaso

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Giorgio Fedele

Istituto Superiore di Sanità

View shared research outputs
Researchain Logo
Decentralizing Knowledge