Paola Vagnarelli
Brunel University London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paola Vagnarelli.
Chromosoma | 2004
Paola Vagnarelli; William C. Earnshaw
Chromosomal passengers are proteins that are involved in coordinating the chromosomal and cytoskeletal events of mitosis. The passengers are present in cells as a complex with at least four members: Aurora B, a protein kinase; inner centromeric protein, an activation and targeting subunit; Survivin (function unknown) and Borealin (function also unknown). The kinase is activated at the onset of mitosis, at least partly accomplished by regulation of the levels of its constituents. As mitosis progresses, the kinase complex moves to a highly choreographed series of locations in the mitotic cell, activating key substrates at precise locations and specific times. Functions that require chromosomal passenger activity include chromatin modification (phosphorylation of histone H3), correction of kinetochore attachment errors, aspects of the spindle assembly checkpoint, assembly of a stable bipolar spindle and the completion of cytokinesis. The chromosomal passenger complex provides an essential mechanism for mitotic regulation.
Current Biology | 2001
Sally P. Wheatley; Ana Carvalho; Paola Vagnarelli; William C. Earnshaw
Three lines of investigation have suggested that interactions between Survivin and the chromosomal passenger proteins INCENP and Aurora-B kinase may be important for mitotic progression. First, interference with the function of Survivin/BIR1, INCENP, or Aurora-B kinase leads to similar defects in mitosis and cytokinesis [1-7] (see [8] for review). Second, INCENP and Aurora-B exist in a complex in Xenopus eggs [9] and in mammalian cultured cells [7]. Third, interference with Survivin or INCENP function causes Aurora-B kinase to be mislocalized in mitosis in both C. elegans and vertebrates [5, 7, 9]. Here, we provide evidence that Survivin, Aurora-B, and INCENP interact physically and functionally. Direct visualization of Survivin-GFP in mitotic cells reveals that it localizes identically to INCENP and Aurora-B. Survivin binds directly to both Aurora-B and INCENP in yeast two-hybrid and in vitro pull-down assays. The in vitro interaction between Survivin and Aurora-B is extraordinarily stable in that it resists 3 M NaCl. Finally, Survivin and INCENP interact functionally in vivo; in cells in which INCENP localization is disrupted, Survivin adheres to the chromosomes and no longer concentrates at the centromeres or transfers to the anaphase spindle midzone. Our data provide the first biochemical evidence that Survivin can interact directly with members of the chromosomal passenger complex.
Developmental Cell | 2001
Eiichiro Sonoda; Takahiro Matsusaka; Ciaran G. Morrison; Paola Vagnarelli; Osamu Hoshi; Tatsuo Ushiki; Kuniharu Nojima; Tatsuo Fukagawa; Irene Waizenegger; Jan-Michael Peters; William C. Earnshaw; Shunichi Takeda
Proteolytic cleavage of the cohesin subunit Scc1 is a consistent feature of anaphase onset, although temporal differences exist between eukaryotes in cohesin loss from chromosome arms, as distinct from centromeres. We describe the effects of genetic deletion of Scc1 in chicken DT40 cells. Scc1 loss caused premature sister chromatid separation but did not disrupt chromosome condensation. Scc1 mutants showed defective repair of spontaneous and induced DNA damage. Scc1-deficient cells frequently failed to complete metaphase chromosome alignment and showed chromosome segregation defects, suggesting aberrant kinetochore function. Notably, the chromosome passenger INCENP did not localize normally to centromeres, while the constitutive kinetochore proteins CENP-C and CENP-H behaved normally. These results suggest a role for Scc1 in mitotic regulation, along with cohesion.
Nature Genetics | 2008
Elen Griffith; Sarah R. Walker; Carol-Anne Martin; Paola Vagnarelli; Tom Stiff; Bertrand Vernay; Nouriya Al Sanna; Anand Saggar; B.C.J. Hamel; William C. Earnshaw; Penny A. Jeggo; Andrew P. Jackson; Mark O'Driscoll
Large brain size is one of the defining characteristics of modern humans. Seckel syndrome (MIM 210600), a disorder of markedly reduced brain and body size, is associated with defective ATR-dependent DNA damage signaling. Only a single hypomorphic mutation of ATR has been identified in this genetically heterogeneous condition. We now report that mutations in the gene encoding pericentrin (PCNT)—resulting in the loss of pericentrin from the centrosome, where it has key functions anchoring both structural and regulatory proteins—also cause Seckel syndrome. Furthermore, we find that cells of individuals with Seckel syndrome due to mutations in PCNT (PCNT-Seckel) have defects in ATR-dependent checkpoint signaling, providing the first evidence linking a structural centrosomal protein with DNA damage signaling. These findings also suggest that other known microcephaly genes implicated in either DNA repair responses or centrosomal function may act in common developmental pathways determining human brain and body size.
Developmental Cell | 2003
Damien F. Hudson; Paola Vagnarelli; Reto Gassmann; William C. Earnshaw
The dramatic condensation of chromosomes that occurs during mitosis is widely thought to be largely controlled by a protein complex termed condensin. Here, we describe a conditional knockout of the condensin subunit ScII/SMC2 in chicken DT40 cells. In cells lacking this condensin subunit, chromosome condensation is delayed, but ultimately reaches near-normal levels. However, these chromosomes are structurally compromised. Kinetochores appear normal, but the localization of nonhistone proteins such as topoisomerase II and INCENP is aberrant. Both proteins also fail to partition into the chromosome scaffold fraction, which appears to be largely missing in the absence of condensin. Furthermore, the chromosomes lack structural integrity, as defined by an assay that tests the stability of the chromosomal higher-order structure. Thus, a major function of condensin is to promote the correct association of nonhistone proteins with mitotic chromosomes, and this is essential for establishment of a robust chromosome structure.
Developmental Cell | 2008
Megumi Nakano; Stefano Cardinale; Vladimir N. Noskov; Reto Gassmann; Paola Vagnarelli; Stefanie Kandels-Lewis; Vladimir Larionov; William C. Earnshaw; Hiroshi Masumoto
Summary We have used a human artificial chromosome (HAC) to manipulate the epigenetic state of chromatin within an active kinetochore. The HAC has a dimeric α-satellite repeat containing one natural monomer with a CENP-B binding site, and one completely artificial synthetic monomer with the CENP-B box replaced by a tetracycline operator (tetO). This HAC exhibits normal kinetochore protein composition and mitotic stability. Targeting of several tet-repressor (tetR) fusions into the centromere had no effect on kinetochore function. However, altering the chromatin state to a more open configuration with the tTA transcriptional activator or to a more closed state with the tTS transcription silencer caused missegregation and loss of the HAC. tTS binding caused the loss of CENP-A, CENP-B, CENP-C, and H3K4me2 from the centromere accompanied by an accumulation of histone H3K9me3. Our results reveal that a dynamic balance between centromeric chromatin and heterochromatin is essential for vertebrate kinetochore activity.
The EMBO Journal | 2004
Helen Dodson; Emer Bourke; Liam J Jeffers; Paola Vagnarelli; Eiichiro Sonoda; Shunichi Takeda; William C. Earnshaw; Andreas Merdes; Ciaran G. Morrison
Centrosomes are the principal microtubule organising centres in somatic cells. Abnormal centrosome number is common in tumours and occurs after γ‐irradiation and in cells with mutations in DNA repair genes. To investigate how DNA damage causes centrosome amplification, we examined cells that conditionally lack the Rad51 recombinase and thereby incur high levels of spontaneous DNA damage. Rad51‐deficient cells arrested in G2 phase and formed supernumerary functional centrosomes, as assessed by light and serial section electron microscopy. This centrosome amplification occurred without an additional DNA replication round and was not the result of cytokinesis failure. G2‐to‐M checkpoint over‐ride by caffeine or wortmannin treatment strongly reduced DNA damage‐induced centrosome amplification. Radiation‐induced centrosome amplification was potentiated by Rad54 disruption. Gene targeting of ATM reduced, but did not abrogate, centrosome amplification induced by DNA damage in both the Rad51 and Rad54 knockout models, demonstrating ATM‐dependent and ‐independent components of DNA damage‐inducible G2‐phase centrosome amplification. Our data suggest DNA damage‐induced centrosome amplification as a mechanism for ensuring death of cells that evade the DNA damage or spindle assembly checkpoints.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Susana A. Ribeiro; Paola Vagnarelli; Yimin Dong; Tetsuya Hori; Bruce F. McEwen; Tatsuo Fukagawa; Cristina Flors; William C. Earnshaw
A longstanding question in centromere biology has been the organization of CENP-A–containing chromatin and its implications for kinetochore assembly. Here, we have combined genetic manipulations with deconvolution and super-resolution fluorescence microscopy for a detailed structural analysis of chicken kinetochores. Using fluorescence microscopy with subdiffraction spatial resolution and single molecule sensitivity to map protein localization in kinetochore chromatin unfolded by exposure to a low salt buffer, we observed robust amounts of H3K9me3, but only low levels of H3K4me2, between CENP-A subdomains in unfolded interphase prekinetochores. Constitutive centromere-associated network proteins CENP-C and CENP-H localize within CENP-A–rich subdomains (presumably on H3-containing nucleosomes) whereas CENP-T localizes in interspersed H3-rich blocks. Although interphase prekinetochores are relatively more resistant to unfolding than sur-rounding pericentromeric heterochromatin, mitotic kinetochores are significantly more stable, reflecting mitotic kinetochore maturation. Loss of CENP-H, CENP-N, or CENP-W had little or no effect on the unfolding of mitotic kinetochores. However, loss of CENP-C caused mitotic kinetochores to unfold to the same extent as their interphase counterparts. Based on our results we propose a new model for inner centromeric chromatin architecture in which chromatin is folded as a layered boustrophedon, with planar sinusoids containing interspersed CENP-A–rich and H3-rich subdomains oriented toward the outer kinetochore. In mitosis, a CENP-C–dependent mechanism crosslinks CENP-A blocks of different layers together, conferring extra stability to the kinetochore.
Molecular and Cellular Biology | 2005
Vinciane Regnier; Paola Vagnarelli; Tatsuo Fukagawa; Tatiana Zerjal; Elizabeth Burns; Didier Trouche; William C. Earnshaw; William Brown
ABSTRACT CENP-A is an evolutionarily conserved, centromere-specific variant of histone H3 that is thought to play a central role in directing kinetochore assembly and in centromere function. Here, we have analyzed the consequences of disrupting the CENP-A gene in the chicken DT40 cell line. In CENP-A-depleted cells, kinetochore protein assembly is impaired, as indicated by mislocalization of the inner kinetochore proteins CENP-I, CENP-H, and CENP-C as well as the outer components Nuf2/Hec1, Mad2, and CENP-E. However, BubR1 and the inner centromere protein INCENP are efficiently recruited to kinetochores. Following CENP-A depletion, chromosomes are deficient in proper congression on the mitotic spindle and there is a transient delay in prometaphase. CENP-A-depleted cells further proceed through anaphase and cytokinesis with unequal chromosome segregation, suggesting that some kinetochore function remains following substantial depletion of CENP-A. We furthermore demonstrate that CENP-A-depleted cells exhibit a specific defect in maintaining kinetochore localization of the checkpoint protein BubR1 under conditions of checkpoint activation. Our data thus point to a specific role for CENP-A in assembly of kinetochores competent in the maintenance of mitotic checkpoint signaling.
Developmental Cell | 2011
Paola Vagnarelli; Susana A. Ribeiro; Lau Sennels; Luis Sanchez-Pulido; Flavia de Lima Alves; Toon Verheyen; David A. Kelly; Chris P. Ponting; Juri Rappsilber; William C. Earnshaw
Summary Repo-Man targets protein phosphatase 1 γ (PP1γ) to chromatin at anaphase onset and regulates chromosome structure during mitotic exit. Here, we show that a Repo-Man:PP1 complex forms in anaphase following dephosphorylation of Repo-Man. Upon activation, the complex localizes to chromosomes and causes the dephosphorylation of histone H3 (Thr3, Ser10, and Ser28). In anaphase, Repo-Man has both catalytic and structural functions that are mediated by two separate domains. A C-terminal domain localizes Repo-Man to bulk chromatin in early anaphase. There, it targets PP1 for the dephosphorylation of histone H3 and possibly other chromosomal substrates. An N-terminal domain localizes Repo-Man to the chromosome periphery later in anaphase. There, it is responsible for the recruitment of nuclear components such as Importin β and Nup153 in a PP1-independent manner. These observations identify Repo-Man as a key factor that coordinates chromatin remodeling and early events of nuclear envelope reformation during mitotic exit.