Paolo A. Muraro
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paolo A. Muraro.
Brain | 2010
Antonio Scalfari; Anneke Neuhaus; Alexandra Degenhardt; G. P. A. Rice; Paolo A. Muraro; Martin Daumer; George C. Ebers
The relationship of relapses to long-term disability in multiple sclerosis is uncertain. Relapse reduction is a common therapeutic target but clinical trials have shown dissociation between relapse suppression and disability accumulation. We investigated relationships between relapses and disability progression for outcomes of requiring assistance to walk, being bedridden and dying from multiple sclerosis [Disability Status Scale 6, 8, 10] by analysing 28 000 patient-years of evolution in 806-bout onset patients from the London Ontario natural history cohort. Having previously shown no effect of relapse frequency among progressive multiple sclerosis subtypes, here we examined these measures in the pre-progressive or relapsing–remitting phase. Survival was compared among groups stratified by (i) early relapses—number of attacks during the first 2 years of multiple sclerosis; (ii) length of first inter-attack interval; (iii) interval between onset and Disability Status Scale 3 (moderate disability); (iv) number of attacks from the third year of disease up to onset of progression; and (v) during the entire relapsing–remitting phase. Early clinical features can predict hard disability outcomes. Frequent relapses in the first 2 years and shorter first inter-attack intervals predicted shorter times to reach hard disability endpoints. Attack frequencies, in the first 2 years, of 1 versus ≥3, gave differences of 7.6, 12.8 and 20.3 years in times from disease onset to Disability Status Scale 6, 8 and 10, respectively. Time to Disability Status Scale 3 highly and independently predicted time to Disability Status Scale 6, 8 and 10. In contrast, neither total number of relapsing–remitting phase attacks nor of relapses experienced during the relapsing–remitting phase after the second year up to onset of progression showed a deleterious effect on times from disease onset, from progression onset and from Disability Status Scale 3 to these hard endpoints. The failure of a regulatory mechanism tied to neurodegeneration is suggested. Relapse frequency beyond Year 2 does not appear to predict the key outcome of secondary progression or times to Disability Status Scale 6, 8 or 10, highlighting two distinct disease phases related to late outcome. These appear to be separated by a watershed within the relapsing–remitting phase, just a few years after clinical onset. Higher early relapse frequencies and shorter first inter-attack intervals herald more rapid deterioration via interaction with the neurodegeneration characterizing secondary progression. They increase the probability of its occurrence, its latency and influence—to a lesser degree—its slope. The prevention or delay of the progressive phase of the disease is implicated as a key therapeutic target in relapsing–remitting patients.
Journal of Experimental Medicine | 2005
Paolo A. Muraro; Amy N. Packer; Katherine Chung; Francisco J. Guenaga; Riccardo Cassiani-Ingoni; Catherine Campbell; Sarfraz Memon; James W. Nagle; Frances T. Hakim; Ronald E. Gress; Henry F. McFarland; Richard K. Burt; Roland Martin
Clinical trials have indicated that autologous hematopoietic stem cell transplantation (HSCT) can persistently suppress inflammatory disease activity in a subset of patients with severe multiple sclerosis (MS), but the mechanism has remained unclear. To understand whether the beneficial effects on the course of disease are mediated by lympho-depletive effects alone or are sustained by a regeneration of the immune repertoire, we examined the long-term immune reconstitution in patients with MS who received HSCT. After numeric recovery of leukocytes, at 2-yr follow-up there was on average a doubling of the frequency of naive CD4+ T cells at the expense of memory T cells. Phenotypic and T cell receptor excision circle (TREC) analysis confirmed a recent thymic origin of the expanded naive T cell subset. Analysis of the T cell receptor repertoire showed the reconstitution of an overall broader clonal diversity and an extensive renewal of clonal specificities compared with pretherapy. These data are the first to demonstrate that long-term suppression of inflammatory activity in MS patients who received HSCT does not depend on persisting lymphopenia and is associated with profound qualitative immunological changes that demonstrate a de novo regeneration of the T cell compartment.
Journal of Clinical Investigation | 1997
Paolo A. Muraro; Marco Vergelli; Matthias Kalbus; Darhlene E. Banks; James W. Nagle; Laura R. Tranquill; Gerald T. Nepom; William E. Biddison; Henry F. McFarland; Roland Martin
The pathogenesis of multiple sclerosis (MS) is currently ascribed in part to a T cell-mediated process targeting myelin components. The T cell response to one candidate autoantigen, myelin basic protein (MBP), in the context of HLA-DR15Dw2, has been previously studied in detail. However, the characteristics of cellular immunity in the context of other MS-associated HLA-DR haplotypes are scarcely known. MBP-specific T cell lines (TCL) were generated from HLA-DR4 (B1*0401)-positive MS subjects. Out of 275 MBP-specific TCL, 178 (64. 7%) specifically recognized region MBP(111-129), predominantly in the context of DRB1*0401. The major T cell epitope for MBP recognition corresponded to residues MBP(116-123). These TCL expressed disparate profiles of cytokine secretion and cytotoxicity. T cell receptor analysis, on the other hand, revealed a strikingly limited heterogeneity of rearrangements. In contrast to MBP(81-99), which binds with high affinity to HLA-DR15 and is recognized by a diverse T cell repertoire, MBP(111-129) binds weakly to DRB1*0401, suggesting that only high affinity T cell receptors might be able to efficiently engage such unstable MHC/peptide complexes, thus accounting for the T cell receptor restriction we observed. This study provides new insight about MBP recognition and proposes an alternative mechanism for immunodominance of self-antigen T cell epitopes in humans.
Neurology | 2011
A. Scalfari; Anneke Neuhaus; Martin Daumer; George C. Ebers; Paolo A. Muraro
Objectives: We tested the hypothesis that age is a prognostic factor with respect to long-term accumulation of disability in multiple sclerosis (MS). Methods: Kaplan-Meier analysis and binary logistic regression models determined the effect of age at disease onset, age at onset of progression, and current age on attainment of severe disability levels (Disability Status Scale [DSS] 6–8–10) from the London, Ontario, database (n = 1,023). Results: Older age at relapsing-remitting (RR) phase onset was associated with higher risk of reaching advanced DSS scores. This was independent of disease duration and early relapse frequency but secondary to increased risk of conversion to secondary progressive (SP) MS. Onset at age 40 (odds ratio [OR] = 4.22) and at age 50 (OR = 6.04) doubled and tripled risks of developing SP, compared to age 20 (OR = 2.05). Younger age at conversion to SPMS was associated with shorter times to high DSS scores from disease onset. The progressive course, unaffected by age at RR onset, was only modestly affected by age at SP onset. Among primary progressive and RR/SP patients, median ages at attainment of DSS scores were strikingly similar: DSS = 6, 49 vs 48 years; DSS = 8, 58 vs 58 years; and DSS = 10, 78 years for both (p = NS for all comparisons). Conclusions: Development of SP is the dominant determinant of long-term prognosis, independent of disease duration and early relapse frequency. Age independently affects disability development primarily by changing probability and latency of SP onset, with little effect on the progressive course.
Journal of Neurology, Neurosurgery, and Psychiatry | 2014
Antonio Scalfari; Anneke Neuhaus; Martin Daumer; Paolo A. Muraro; George C. Ebers
Objectives To assess factors affecting the rate of conversion to secondary progressive (SP) multiple sclerosis (MS) and its subsequent evolution. Methods Among 806 patients with relapsing remitting (RR) onset MS from the London Ontario database, we used Kaplan–Meier, Cox regression and multiple logistic regression analyses to investigate the effect of baseline clinical and demographic features on (1) the probability of, and the time to, SP disease, (2) the time to bedbound status (Disability Status Scale (DSS 8)) from onset of progression. Results The risk of entering the SP phase increased proportionally with disease duration (OR=1.07 for each additional year; p<0.001). Shorter latency to SP was associated with shorter times to severe disability. The same association was found even when patients were grouped by number of total relapses before progression. However, the evolution of the SP phase was not influenced by the duration of the RR phase. Male sex (HR=1.41; p<0.001), older age at onset (age ≤20 and 21–30 vs >30 HR=0.52 (p<0.001), 0.65 (p<0.001), respectively) and high early relapse frequency (1–2 attacks vs ≥3 HR=0.63 (p<0.001), 0.75 (p=0.04), respectively) predicted significantly higher risk of SP MS and shorter latency to progression. Times to DSS 8 from onset of progression were significantly shorter among those with high early relapse frequency (≥3 attacks), and among those presenting with cerebellar and brainstem symptoms. Conclusions The onset of SP MS is the dominant determinant of long-term prognosis, and its prevention is the most important target measure for treatment. Baseline clinical features of early relapse frequency and age at onset can be used to select groups at higher risk of developing severe disability based on the probability of their disease becoming progressive within a defined time period.
JAMA Neurology | 2015
Richard A. Nash; George J. Hutton; Michael K. Racke; Uday Popat; Steven M. Devine; Linda M. Griffith; Paolo A. Muraro; Harry Openshaw; Peter Sayre; Olaf Stüve; Douglas L. Arnold; Meagan Spychala; Kaitlyn C. McConville; Kristina M. Harris; Deborah Phippard; George E. Georges; Annette Wundes; George H. Kraft; James D. Bowen
IMPORTANCE Most patients with relapsing-remitting (RR) multiple sclerosis (MS) who receive approved disease-modifying therapies experience breakthrough disease and accumulate neurologic disability. High-dose immunosuppressive therapy (HDIT) with autologous hematopoietic cell transplant (HCT) may, in contrast, induce sustained remissions in early MS. OBJECTIVE To evaluate the safety, efficacy, and durability of MS disease stabilization through 3 years after HDIT/HCT. DESIGN, SETTING, AND PARTICIPANTS Hematopoietic Cell Transplantation for Relapsing-Remitting Multiple Sclerosis (HALT-MS) is an ongoing, multicenter, single-arm, phase 2 clinical trial of HDIT/HCT for patients with RRMS who experienced relapses with loss of neurologic function while receiving disease-modifying therapies during the 18 months before enrolling. Participants are evaluated through 5 years after HCT. This report is a prespecified, 3-year interim analysis of the trial. Thirty-six patients with RRMS from referral centers were screened; 25 were enrolled. INTERVENTIONS Autologous peripheral blood stem cell grafts were CD34+ selected; the participants then received high-dose treatment with carmustine, etoposide, cytarabine, and melphalan as well as rabbit antithymocyte globulin before autologous HCT. MAIN OUTCOMES AND MEASURES The primary end point of HALT-MS is event-free survival defined as survival without death or disease activity from any one of the following outcomes: (1) confirmed loss of neurologic function, (2) clinical relapse, or (3) new lesions observed on magnetic resonance imaging. Toxic effects are reported using National Cancer Institute Common Terminology Criteria for Adverse Events. RESULTS Grafts were collected from 25 patients, and 24 of these individuals received HDIT/HCT. The median follow-up period was 186 weeks (interquartile range, 176-250) weeks). Overall event-free survival was 78.4% (90% CI, 60.1%-89.0%) at 3 years. Progression-free survival and clinical relapse-free survival were 90.9% (90% CI, 73.7%-97.1%) and 86.3% (90% CI, 68.1%-94.5%), respectively, at 3 years. Adverse events were consistent with expected toxic effects associated with HDIT/HCT, and no acute treatment-related neurologic adverse events were observed. Improvements were noted in neurologic disability, quality-of-life, and functional scores. CONCLUSIONS AND RELEVANCE At 3 years, HDIT/HCT without maintenance therapy was effective for inducing sustained remission of active RRMS and was associated with improvements in neurologic function. Treatment was associated with few serious early complications or unexpected adverse events.
Blood | 2014
Ahmad Khoder; Anushruti Sarvaria; Abdullah Alsuliman; Claude Chew; Takuya Sekine; Nichola Cooper; Stephan Mielke; Hugues de Lavallade; Muharrem Muftuoglu; Irina Fernandez Curbelo; Enli Liu; Paolo A. Muraro; Amin M. Alousi; Kate Stringaris; Simrit Parmar; Nina Shah; Hila Shaim; Eric Yvon; Jeffrey J. Molldrem; Rayne H. Rouce; Richard E. Champlin; Ian McNiece; Claudia Mauri; Elizabeth J. Shpall; Katy Rezvani
A subset of regulatory B cells (Bregs) in mice negatively regulate T-cell immune responses through the secretion of regulatory cytokines such as IL-10 and direct cell-cell contact and have been linked to experimental models of autoimmunity, inflammation, and cancer. However, the regulatory function of Bregs in human disease is much less clear. Here we demonstrate that B cells with immunoregulatory properties are enriched within both the CD19(+)IgM(+)CD27(+) memory and CD19(+)CD24(hi)CD38(hi) transitional B-cell subsets in healthy human donors. Both subsets suppressed the proliferation and interferon-γ production of CD3/CD28-stimulated autologous CD4(+) T cells in a dose-dependent manner, and both relied on IL-10 secretion as well as cell-cell contact, likely mediated through CD80 and CD86, to support their full suppressive function. Moreover, after allogeneic stem cell transplantation, Bregs from patients with chronic graft-versus-host disease (cGVHD) were less frequent and less likely to produce IL-10 than were Bregs from healthy donors and patients without cGVHD. These findings suggest that Bregs may be involved in the pathogenesis of cGVHD and support future investigation of regulatory B cell-based therapy in the treatment of this disease.
Journal of Neuroimmunology | 1999
Bibiana Bielekova; Paolo A. Muraro; Ladan Golestaneh; Jeanick Pascal; Henry F. McFarland; Roland Martin
We have developed a new technique that allows us to quantify antigen-specific T cells, and to determine their functional phenotype and origin from naive versus memory populations. Using this methodology, we have characterized a total of 286 T-cell lines specific for myelin basic protein (MBP) and influenza hemagglutinin from 16 multiple sclerosis (MS) patients and nine healthy donors. Our data support the notion that MBP-specific T cells undergo in vivo activation in MS patients and indicate a presence of immune dysregulation that renders MS patients prone to develop autoimmunity. Our methodology offers a way to study antigen-specific T-cell characteristics as a surrogate marker in immunotherapy trials.
Multiple Sclerosis Journal | 2012
Riccardo Saccardi; Maria Pia Sormani; H Atkins; Dominique Farge; Linda M. Griffith; George H. Kraft; Giovanni Luigi Mancardi; Richard A. Nash; Marcelo C. Pasquini; Roland Martin; Paolo A. Muraro
Background: Haematopoietic stem cell transplantation (HSCT) has been tried in the last 15 years as a therapeutic option in patients with poor-prognosis autoimmune disease who do not respond to conventional treatments. Worldwide, more than 600 patients with multiple sclerosis (MS) have been treated with HSCT, most of them having been recruited in small, single-centre, phase 1–2 uncontrolled trials. Clinical and magnetic resonance imaging outcomes from case series reports or Registry-based analyses suggest that a major response is achieved in most patients; quality and duration of response are better in patients transplanted during the relapsing–remitting phase than in those in the secondary progressive stage. Objectives: An interdisciplinary group of neurologists and haematologists has been formed, following two international meetings supported by the European and American Blood and Marrow Transplantation Societies, for the purpose of discussing a controlled clinical trial, to be designed within the new scenarios of evolving MS treatments. Conclusions: Objectives of the trial, patient selection, transplant technology and outcome assessment were extensively discussed. The outcome of this process is summarized in the present paper, with the goal of establishing the background and advancing the development of a prospective, randomized, controlled multicentre trial to assess the clinical efficacy of HSCT for the treatment of highly active MS.
Journal of Immunology | 2000
Paolo A. Muraro; Martin Pette; Bibiana Bielekova; Henry F. McFarland; Roland Martin
T cells with specificity for self-Ags are normally present in the peripheral blood, and, upon activation, may target tissue Ags and become involved in the pathogenesis of autoimmune processes. In multiple sclerosis, a demyelinating disease of the CNS, it is postulated that inflammatory damage is initiated by CD4+ T cells reactive to myelin Ags. To investigate the potential naive vs memory origin of circulating myelin-reactive cells, we have generated myelin basic protein (MBP)- and tetanus toxoid-specific T cell clones from CD45RA+/RO− and CD45RO+/RA− CD4+ T cell subsets from the peripheral blood of multiple sclerosis patients and controls. Our results show that 1) the response to MBP, different from that to TT, predominantly emerges from the CD45RA+ subset; 2) the reactivity to immunodominant MBP epitopes mostly resides in the CD45RA+ subset; 3) in each individual, the recognition of single MBP epitopes is skewed to either subset, with no overlap in the Ag fine specificity; and 4) in spite of a lower expression of costimulatory and adhesion molecules, CD45RA+ subset-derived clones recognize epitopes with higher functional Ag avidity. These findings point to a central role of the naive CD45RA+ T cell subset as the source for immunodominant, potentially pathogenic effector CD4+ T cell responses in humans.