Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paolo Arosio is active.

Publication


Featured researches published by Paolo Arosio.


Biochimica et Biophysica Acta | 2009

Ferritins: A family of molecules for iron storage, antioxidation and more

Paolo Arosio; Rosaria Ingrassia; Patrizia Cavadini

Ferritins are characterized by highly conserved three-dimensional structures similar to spherical shells, designed to accommodate large amounts of iron in a safe, soluble and bioavailable form. They can have different architectures with 12 or 24 equivalent or non-equivalent subunits, all surrounding a large cavity. All ferritins readily interact with Fe(II) to induce its oxidation and deposition in the cavity in a mineral form, in a reaction that is catalyzed by a ferroxidase center. This is an anti-oxidant activity that consumes Fe(II) and peroxides, the reagents that produce toxic free radicals in the Fenton reaction. The mechanism of ferritin iron incorporation has been characterized in detail, while that of iron release and recycling has been less thoroughly studied. Generally ferritin expression is regulated by iron and by oxidative damage, and in vertebrates it has a central role in the control of cellular iron homeostasis. Ferritin is mostly cytosolic but is found also in mammalian mitochondria and nuclei, in plant plastids and is secreted in insects. In vertebrates the cytosolic ferritins are composed of H and L subunit types and their assembly in a tissues specific ratio that permits flexibility to adapt to cell needs. The H-ferritin can translocate to the nuclei in some cell types to protect DNA from iron toxicity, or can be actively secreted, accomplishing various functions. The mitochondrial ferritin is found in mammals, it has a restricted tissue distribution and it seems to protect the mitochondria from iron toxicity and oxidative damage. The various functions attributed to the cytosolic, nuclear, secretory and mitochondrial ferritins are discussed.


Free Radical Biology and Medicine | 2002

Ferritin, iron homeostasis, and oxidative damage,

Paolo Arosio; Sonia Levi

Ferritin is one of the major proteins of iron metabolism. It is almost ubiquitous and tightly regulated by the metal. Biochemical and structural properties of the ferritins are largely conserved from bacteria to man, although the role in the regulation of iron trafficking varies in the different organisms. Recent studies have clarified some of the major aspects of the reaction between iron and ferritin, which results in the formation of the iron core and production of hydrogen peroxide. The characterization of cellular models in which ferritin expression is modulated has shown that the ferroxidase catalytic site on the H-chain has a central role in regulating iron availability. In turn, this has secondary effects on a number of cellular activities, which include proliferation and resistance to oxidative damage. Moreover, the response to apoptotic stimuli is affected by H-ferritin expression. Altered ferritin L-chain expression has been found in at least two types of genetic disorders, although its role in the determination of the pathology has not been fully clarified. The recent discovery of a new ferritin specific for the mitochondria, which is functionally similar to the H-ferritin, opens new perspectives in the study of the relationships between iron, oxidative damage and free radicals.


Journal of Neurochemistry | 2002

A Quantitative Analysis of Isoferritins in Select Regions of Aged, Parkinsonian, and Alzheimer's Diseased Brains

James R. Connor; Brian Snyder; Paolo Arosio; David A. Loeffler; Peter A. LeWitt

Abstract: The brain requires a ready supply of iron for normal neurological function, but free iron is toxic. Consequently, iron bioavailability must be stringently regulated. Recent evidence has suggested that the brain iron regulatory system is dysfunctional in neurological disorders such as Alzheimers and Parkinsons diseases (AD and PD, respectively). A key component of the iron regulatory system in the brain is ferritin. Ferritin consists of 24 subunits, which are distinguished as either a heavy‐chain (H) or light‐chain (L) isoform. These peptide subunits are genetically and functionally distinct. Thus, the ability to investigate separately the types of ferritin in brain should provide insight into iron management at both the cellular and the molecular level. In this study, the ratio of isoferritins was determined in select regions of adult elderly AD and PD human brains. The H‐rich ferritin was more abundant in the young brain, except in the globus pallidus where the ratio of H/L ferritin was 1:1. The balance of H/L isoferritins was influenced by age, brain region, and disease state. With normal aging, both H and L ferritin increased; however, the age‐associated increase in isoferritins generally failed to occur in AD and PD brain tissue. The imbalance in H/L isoferritins was disease and region specific. For example, in frontal cortex, there was a dramatic (fivefold) increase in the ratio of H/L ferritin in AD brains but not in PD brains. In PD, caudate and putamen H/L ratios were higher than in AD and the elderly control group. The analysis of isoferritin expression in brain provides insight into regional iron regulation under normal conditions and suggests a loss of ability to maintain iron homeostasis in the two disease states. This latter observation provides further evidence of dysfunction of iron homeostatic mechanisms in AD and PD and may contribute significantly to understanding the underlying pathogenesis of each, particularly in relation to iron‐induced oxidative damage.


Journal of Inorganic Biochemistry | 1992

Structure, function, and evolution of ferritins

S. C. Andrews; Paolo Arosio; Werner Bottke; J. F. Briat; M. von Darl; Pauline M. Harrison; J. P. Laulhère; Sonia Levi; S. Lobreaux; Stephen J. Yewdall

The ferritins of animals and plants and the bacterioferritins (BFRs) have a common iron-storage function in spite of differences in cytological location and biosynthetic regulation. The plant ferritins and BFRs are more similar to the H chains of mammals than to mammalian L chains, with respect to primary structure and conservation of ferroxidase center residues. Hence they probably arose from a common H-type ancestor. The recent discovery in E. coli of a second type of iron-storage protein (FTN) resembling ferritin H chains raises the question of what the relative roles of these two proteins are in this organism. Mammalian L ferritins lack ferroxidase centers and form a distinct group. Comparison of the three-dimensional structures of mammalian and invertebrate ferritins, as well as computer modeling of plant ferritins and of BFR, indicate a well conserved molecular framework. The characterisation of numerous ferritin homopolymer variants has allowed the identification of some of the residues involved in iron uptake and an investigation of some of the functional differences between mammalian H and L chains.


FEBS Letters | 1989

Identification of the ferroxidase centre in ferritin

David M. Lawson; Amyra Treffry; Peter J. Artymiuk; Pauline M. Harrison; Stephen J. Yewdall; Alessandra Luzzago; Gianne Cesareni; Sonia Levi; Paolo Arosio

Ferroxidase activity in human H‐chain ferritin has been studied with the aid of site‐directed mutagenesis. A site discovered by X‐ray crystallography has now been identified as the ferroxidase centre. This centre is present only in H‐chains and is located within the four‐helix bundle of the chain fold.


Journal of Biological Chemistry | 2000

Overexpression of Wild Type and Mutated Human Ferritin H-chain in HeLa Cells IN VIVO ROLE OF FERRITIN FERROXIDASE ACTIVITY

Anna Cozzi; Barbara Corsi; Sonia Levi; Paolo Santambrogio; Alberto Albertini; Paolo Arosio

Transfectant HeLa cells were generated that expressed human ferritin H-chain wild type and an H-chain mutant with inactivated ferroxidase activity under the control of the tetracycline-responsive promoter (Tet-off). The clones accumulated exogenous ferritins up to levels 14–16-fold over background, half of which were as H-chain homopolymers. This had no evident effect in the mutant ferritin clone, whereas it induced an iron-deficient phenotype in the H-ferritin wild type clone, manifested by ∼5-fold increase of IRPs activity, ∼2.5-fold increase of transferrin receptor, ∼1.8-fold increase in iron-transferrin iron uptake, and ∼50% reduction of labile iron pool. Overexpression of the H-ferritin, but not of the mutant ferritin, strongly reduced cell growth and increased resistance to H2O2 toxicity, effects that were reverted by prolonged incubation in iron-supplemented medium. The results show that in HeLa cells H-ferritin regulates the metabolic iron pool with a mechanism dependent on the functionality of the ferroxidase centers, and this affects, in opposite directions, cellular growth and resistance to oxidative damage. This, and the finding that alsoin vivo H-chain homopolymers are much less efficient than the H/L heteropolymers in taking up iron, indicate that functional activity of H-ferritin in HeLa cells is that predicted from thein vitro data.


Biochimica et Biophysica Acta | 2010

Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage

Paolo Arosio; Sonia Levi

BACKGROUND Ferritin structure is designed to maintain large amounts of iron in a compact and bioavailable form in solution. All ferritins induce fast Fe(II) oxidation in a reaction catalyzed by a ferroxidase center that consumes Fe(II) and peroxides, the reagents that produce toxic free radicals in the Fenton reaction, and thus have anti-oxidant effects. Cytosolic ferritins are composed of the H- and L-chains, whose expression are regulated by iron at a post-transcriptional level and by oxidative stress at a transcriptional level. The regulation of mitochondrial ferritin expression is presently unclear. SCOPE OF REVIEW The scope of the review is to update recent progress regarding the role of ferritins in the regulation of cellular iron and in the response to oxidative stress with particular attention paid to the new roles described for cytosolic ferritins, to genetic disorders caused by mutations of the ferritin L-chain, and new findings on mitochondrial ferritin. MAJOR CONCLUSIONS The new data on the adult conditional knockout (KO) mice for the H-chain and on the hereditary ferritinopathies with mutations that reduce ferritin functionality strongly indicate that the major role of ferritins is to protect from the oxidative damage caused by iron deregulation. In addition, the study of mitochondrial ferritin, which is not iron-regulated, indicates that it participates in the protection against oxidative damage, particularly in cells with high oxidative activity. GENERAL SIGNIFICANCE Ferritins have a central role in the protection against oxidative damage, but they are also involved in non-iron-dependent processes.


Journal of Autoimmunity | 2008

New functions for an iron storage protein: The role of ferritin in immunity and autoimmunity

Stefania Recalcati; Pietro Invernizzi; Paolo Arosio; Gaetano Cairo

Ferritin is a ubiquitous and specialised protein involved in the intracellular storage of iron; it is also present in serum and other biological fluids, although its secretion processes are still unclear. We here review evidence supporting the hypothesis that macrophages play a role in the production and secretion of extracellular ferritin, as well as evidence supporting a novel function as a signalling molecule and immune regulator. In particular, H-ferritin, which inhibits the proliferation of lymphoid and myeloid cells, may be regarded as a negative regulator of human and murine hematopoiesis. The idea that it also acts as a signalling protein has been supported by the cloning and characterisation of the specific H-ferritin receptor TIM-2, a member of the TIM gene family. A number of studies of the mouse TIM gene family indicate that this protein plays an important role in immune-mediated diseases. This last finding, together with the fact that ferritin acts as an immuno-suppressor, has allowed us to formulate hypotheses regarding the possible role of alterations of H-ferritin/TIM-2 binding/signalling in the pathogenesis of autoimmune diseases.


Journal of Molecular Biology | 1991

Influence of site-directed modifications on the formation of iron cores in ferritin.

Vanessa J. Wade; Sonia Levi; Paolo Arosio; Amyra Treffry; Pauline M. Harrison; Stephen Mann

The structure and crystal chemical properties of iron cores of reconstituted recombinant human ferritins and their site-directed variants have been studied by transmission electron microscopy and electron diffraction. The kinetics of Fe uptake have been compared spectrophotometrically. Recombinant L and H-chain ferritins, and recombinant H-chain variants incorporating modifications in the threefold (Asp131----His or Glu134----Ala) and fourfold (Leu169----Arg) channels, at the partially buried ferroxidase sites (Glu62,His65----Lys,Gly), a putative nucleation site on the inner surface (Glu61,Glu64,Glu67----Ala), and both the ferroxidase and nucleation sites (Glu62,His65----Lys,Gly and Glu61,Glu64,Glu67----Ala), were investigated. An additional H-chain variant, incorporating substitution of the last ten C-terminal residues for those of the L-chain protein, was also studied. Most of the proteins assimilated iron to give discrete electron-dense cores of the Fe(III) hydrated oxide, ferrihydrite (Fe2O3.nH2O). No differences were observed for variants modified in the three- or fourfold channels compared with the unmodified H-chain ferritin. The recombinant L-chain ferritin and H-chain variant depleted of the ferroxidase site, however, showed markedly reduced uptake kinetics and comprised cores of increased diameter and regularity. Depletion of the inner surface Glu residues, whilst maintaining the ferroxidase site, resulted in a partially reduced rate of Fe uptake and iron cores of wider particle size distribution. Modification of both ferroxidase and inner surface Glu residues resulted in complete inhibition of iron uptake and deposition. No cores were observed by electron microscopy although negative staining showed that the protein shell was intact. The general requirement of an appropriate spatial charge density across the cavity surface rather than specific amino acid residues could explain how, in spite of an almost complete lack of identity between the amino acid sequences of bacterioferritin and mammalian ferritins, ferrihydrite is deposited within the cavity of both proteins under similar reconstitution conditions.


Journal of Histochemistry and Cytochemistry | 2007

Mitochondrial ferritin expression in adult mouse tissues

Paolo Santambrogio; Giorgio Biasiotto; Francesca Sanvito; Stefano Olivieri; Paolo Arosio; Sonia Levi

Mitochondrial ferritin (FtMt) is a novel ferritin type specifically targeted to mitochondria. It is highly expressed in the human testis and in sideroblasts from patients with sideroblastic anemia, but other organs have not been studied. To study its expression in the main organs of the mouse, we first used RT-PCR and then produced recombinant mouse FtMt and specific antibodies. Immunohistochemistry analyses confirmed that FtMt is highly expressed in mouse testis, particularly in spermatocytes and interstitial Leydig cells. The protein was also identified in other organs including heart, brain, spinal cord, kidney, and pancreatic islet of Langerhans but not in liver and splenocytes, which have iron storage function and express high levels of cytosolic ferritins. Results indicate that the primary function of ferritin FtMt is not involved in storing cellular or body iron, but its association with cell types characterized by high metabolic activity and oxygen consumption suggests a role in protecting mitochondria from iron-dependent oxidative damage.

Collaboration


Dive into the Paolo Arosio's collaboration.

Top Co-Authors

Avatar

Sonia Levi

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Paolo Santambrogio

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Anna Cozzi

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maura Poli

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge