Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paolo Ascenzi is active.

Publication


Featured researches published by Paolo Ascenzi.


Molecular Aspects of Medicine | 2012

Human serum albumin: From bench to bedside

Gabriella Fanali; Alessandra di Masi; Viviana Trezza; Maria Marino; Mauro Fasano; Paolo Ascenzi

Human serum albumin (HSA), the most abundant protein in plasma, is a monomeric multi-domain macromolecule, representing the main determinant of plasma oncotic pressure and the main modulator of fluid distribution between body compartments. HSA displays an extraordinary ligand binding capacity, providing a depot and carrier for many endogenous and exogenous compounds. Indeed, HSA represents the main carrier for fatty acids, affects pharmacokinetics of many drugs, provides the metabolic modification of some ligands, renders potential toxins harmless, accounts for most of the anti-oxidant capacity of human plasma, and displays (pseudo-)enzymatic properties. HSA is a valuable biomarker of many diseases, including cancer, rheumatoid arthritis, ischemia, post-menopausal obesity, severe acute graft-versus-host disease, and diseases that need monitoring of the glycemic control. Moreover, HSA is widely used clinically to treat several diseases, including hypovolemia, shock, burns, surgical blood loss, trauma, hemorrhage, cardiopulmonary bypass, acute respiratory distress syndrome, hemodialysis, acute liver failure, chronic liver disease, nutrition support, resuscitation, and hypoalbuminemia. Recently, biotechnological applications of HSA, including implantable biomaterials, surgical adhesives and sealants, biochromatography, ligand trapping, and fusion proteins, have been reported. Here, genetic, biochemical, biomedical, and biotechnological aspects of HSA are reviewed.


Iubmb Life | 2005

The extraordinary ligand binding properties of human serum albumin

Mauro Fasano; Stephen Curry; Enzo Terreno; Monica Galliano; Gabriella Fanali; Pasquale Narciso; Stefania Notari; Paolo Ascenzi

Human serum albumin (HSA), the most prominent protein in plasma, binds different classes of ligands at multiple sites. HSA provides a depot for many compounds, affects pharmacokinetics of many drugs, holds some ligands in a strained orientation providing their metabolic modification, renders potential toxins harmless transporting them to disposal sites, accounts for most of the antioxidant capacity of human serum, and acts as a NO‐carrier. The globular domain structural organization of monomeric HSA is at the root of its allosteric properties which are reminiscent of those of multimeric proteins. Here, structural, functional, biotechnological, and biomedical aspects of ligand binding to HSA are summarized.


Current Genomics | 2006

Estrogen signaling multiple pathways to impact gene transcription

Maria Marino; Paola Galluzzo; Paolo Ascenzi

Steroid hormones exert profound effects on cell growth, development, differentiation, and homeostasis. Their effects are mediated through specific intracellular steroid receptors that act via multiple mechanisms. Among others, the action mechanism starting upon 17beta-estradiol (E2) binds to its receptors (ER) is considered a paradigmatic example of how steroid hormones function. Ligand-activated ER dimerizes and translocates in the nucleus where it recognizes specific hormone response elements located in or near promoter DNA regions of target genes. Behind the classical genomic mechanism shared with other steroid hormones, E2 also modulates gene expression by a second indirect mechanism that involves the interaction of ER with other transcription factors which, in turn, bind their cognate DNA elements. In this case, ER modulates the activities of transcription factors such as the activator protein (AP)-1, nuclear factor-kappaB (NF-kappaB) and stimulating protein-1 (Sp-1), by stabilizing DNA-protein complexes and/or recruiting co-activators. In addition, E2 binding to ER may also exert rapid actions that start with the activation of a variety of signal transduction pathways (e.g. ERK/MAPK, p38/MAPK, PI3K/AKT, PLC/PKC). The debate about the contribution of different ER-mediated signaling pathways to coordinate the expression of specific sets of genes is still open. This review will focus on the recent knowledge about the mechanism by which ERs regulate the expression of target genes and the emerging field of integration of membrane and nuclear receptor signaling, giving examples of the ways by which the genomic and non-genomic actions of ERs on target genes converge.


Structure | 2003

Human Brain Neuroglobin Structure Reveals a Distinct Mode of Controlling Oxygen Affinity

Alessandra Pesce; Sylvia Dewilde; Marco Nardini; Luc Moens; Paolo Ascenzi; Thomas Hankeln; Thorsten Burmester; Martino Bolognesi

Neuroglobin, mainly expressed in vertebrate brain and retina, is a recently identified member of the globin superfamily. Augmenting O(2) supply, neuroglobin promotes survival of neurons upon hypoxic injury, potentially limiting brain damage. In the absence of exogenous ligands, neuroglobin displays a hexacoordinated heme. O(2) and CO bind to the heme iron, displacing the endogenous HisE7 heme distal ligand. Hexacoordinated human neuroglobin displays a classical globin fold adapted to host the reversible bis-histidyl heme complex and an elongated protein matrix cavity, held to facilitate O(2) diffusion to the heme. The neuroglobin structure suggests that the classical globin fold is endowed with striking adaptability, indicating that hemoglobin and myoglobin are just two examples within a wide and functionally diversified protein homology superfamily.


EMBO Reports | 2002

Neuroglobin and cytoglobin: Fresh blood for the vertebrate globin family

Alessandra Pesce; Martino Bolognesi; Alessio Bocedi; Paolo Ascenzi; Sylvia Dewilde; Luc Moens; Thomas Hankeln; Thorsten Burmester

Neuroglobin and cytoglobin are two recently discovered members of the vertebrate globin family. Both are intracellular proteins endowed with hexacoordinated heme‐Fe atoms, in their ferrous and ferric forms, and display O2 affinities comparable with that of myoglobin. Neuroglobin, which is predominantly expressed in nerve cells, is thought to protect neurons from hypoxic–ischemic injury. It is of ancient evolutionary origin, and is homologous to nerve globins of invertebrates. Cytoglobin is expressed in many different tissues, although at varying levels. It shares common ancestry with myoglobin, and can be traced to early vertebrate evolution. The physiological roles of neuroglobin and cytoglobin are not completely understood. Although supplying cells with O2 is the likely function, it is also possible that both globins act as O2‐consuming enzymes or as O2 sensors. Here, we review what is currently known about neuroglobin and cytoglobin in terms of their function, tissue distribution and relatedness to the well‐known hemoglobin and myoglobin. Strikingly, the data reveal that O2 metabolism in cells is more complicated than was thought before, requiring unexpected O2‐binding proteins with potentially novel functional features.


The EMBO Journal | 2000

A novel two-over-two alpha-helical sandwich fold is characteristic of the truncated hemoglobin family.

Alessandra Pesce; Manon Couture; Sylvia Dewilde; Michel Guertin; Kiyoshi Yamauchi; Paolo Ascenzi; Luc Moens; Martino Bolognesi

Small hemoproteins displaying amino acid sequences 20–40 residues shorter than (non‐)vertebrate hemoglobins (Hbs) have recently been identified in several pathogenic and non‐pathogenic unicellular organisms, and named ‘truncated hemoglobins’ (trHbs). They have been proposed to be involved not only in oxygen transport but also in other biological functions, such as protection against reactive nitrogen species, photosynthesis or to act as terminal oxidases. Crystal structures of trHbs from the ciliated protozoan Paramecium caudatum and the green unicellular alga Chlamydomonas eugametos show that the tertiary structure of both proteins is based on a ‘two‐over‐two’ α‐helical sandwich, reflecting an unprecedented editing of the classical ‘three‐over‐three’ α‐helical globin fold. Based on specific Gly–Gly motifs the tertiary structure accommodates the deletion of the N‐terminal A‐helix and replacement of the crucial heme‐binding F‐helix with an extended polypeptide loop. Additionally, concerted structural modifications allow burying of the heme group and define the distal site, which hosts a TyrB10, GlnE7 residue pair. A set of structural and amino acid sequence consensus rules for stabilizing the fold and the bound heme in the trHbs homology subfamily is deduced.


The EMBO Journal | 2001

Mycobacterium tuberculosis hemoglobin N displays a protein tunnel suited for O2 diffusion to the heme

Mario Milani; Alessandra Pesce; Yannick Ouellet; Paolo Ascenzi; Michel Guertin; Martino Bolognesi

Macrophage‐generated oxygen‐ and nitrogen‐reactive species control the development of Mycobacterium tuberculosis infection in the host. Mycobacterium tuberculosis ‘truncated hemoglobin’ N (trHbN) has been related to nitric oxide (NO) detoxification, in response to macrophage nitrosative stress, during the bacterium latent infection stage. The three‐dimensional structure of oxygenated trHbN, solved at 1.9 Å resolution, displays the two‐over‐two α‐helical sandwich fold recently characterized in two homologous truncated hemoglobins, featuring an extra N‐terminal α‐helix and homodimeric assembly. In the absence of a polar distal E7 residue, the O2 heme ligand is stabilized by two hydrogen bonds to TyrB10(33). Strikingly, ligand diffusion to the heme in trHbN may occur via an apolar tunnel/cavity system extending for ∼28 Å through the protein matrix, connecting the heme distal cavity to two distinct protein surface sites. This unique structural feature appears to be conserved in several homologous truncated hemoglobins. It is proposed that in trHbN, heme Fe/O2 stereochemistry and the protein matrix tunnel may promote O2/NO chemistry in vivo, as a M.tuberculosis defense mechanism against macrophage nitrosative stress.


Iubmb Life | 2005

Hemoglobin and heme scavenging

Paolo Ascenzi; Alessio Bocedi; Paolo Visca; Fiorella Altruda; Emanuela Tolosano; Tiziana Beringhelli; Mauro Fasano

Release of hemoglobin into plasma is a physiological phenomenon associated with intravascular hemolysis. In plasma, stable haptoglobin‐hemoglobin complexes are formed and these are subsequently delivered to the reticulo‐endothelial system by CD163 receptor‐mediated endocytosis. Heme arising from the degradation of hemoglobin, myoglobin, and of enzymes with heme prosthetic groups could be delivered in plasma. Albumin, haptoglobin, hemopexin, and high and low density lipoproteins cooperate to trap the plasma heme, thereby ensuring its complete clearance. Then hemopexin releases the heme into hepatic parenchymal cells only after internalization of the hemopexin‐heme complex by CD91 receptor‐mediated endocytosis. Moreover, α1‐microglobulin contributes to heme degradation by a still unknown mechanism, with the concomitant formation of heterogeneous yellow‐brown kynurenine‐derived chromophores which are very tightly bound to amino acid residues close to the rim of the lipocalin pocket. During hemoglobin synthesis, the erythroid α‐chain hemoglobin‐stabilizing protein specifically binds free α‐hemoglobin subunits limiting the free protein toxicity. Although highly toxic because capable of catalyzing free radical formation, heme is also a major and readily available source of iron for pathogenic organisms. Gram‐negative bacteria pick up the heme‐bound iron through the secretion of a hemophore that takes up either free heme or heme bound to heme‐proteins and transports it to a specific receptor, which, in turn, releases the heme and hence iron into the bacterium. Here, hemoglobin and heme trapping mechanisms are summarized. IUBMB Life, 57: 749‐759, 2005


Structure | 1999

A 30 Å long U-shaped catalytic tunnel in the crystal structure of polyamine oxidase

Claudia Binda; Alessandro Coda; Riccardo Angelini; Rodolfo Federico; Paolo Ascenzi; Andrea Mattevi

Abstract Background: Polyamines are essential for cell growth and differentiation; compounds interfering with their metabolism are potential anticancer agents. Polyamine oxidase (PAO) plays a central role in polyamine homeostasis. The enzyme utilises an FAD cofactor to catalyse the oxidation of the secondary amino groups of spermine and spermidine. Results: The first crystal structure of a polyamine oxidase has been determined to a resolution of 1.9 A. PAO from Zea mays contains two domains, which define a remarkable 30 Along U-shaped catalytic tunnel at their interface. The structure of PAO in complex with the inhibitor MDL72527 reveals the residues forming the catalytic machinery and unusual enzyme-inhibitor CH···O H bonds. A ring of glutamate and aspartate residues surrounding one of the two tunnel openings contributes to the steering of the substrate towards the inside of the tunnel. Conclusions: PAO specifically oxidises substrates that have both primary and secondary amino groups. The complex with MDL72527 shows that the primary amino groups are essential for the proper alignment of the substrate with respect to the flavin. Conservation of an N-terminal sequence motif indicates that PAO is member of a novel family of flavoenzymes. Among these, monoamine oxidase displays significant sequence homology with PAO, suggesting a similar overall folding topology.


FEBS Letters | 2002

Anthrax toxin: a tripartite lethal combination1

Paolo Ascenzi; Paolo Visca; Giuseppe Ippolito; Andrea Spallarossa; Martino Bolognesi; Cesare Montecucco

Anthrax is a severe bacterial infection that occurs when Bacillus anthracis spores gain access into the body and germinate in macrophages, causing septicemia and toxemia. Anthrax toxin is a binary A–B toxin composed of protective antigen (PA), lethal factor (LF), and edema factor (EF). PA mediates the entry of either LF or EF into the cytosol of host cells. LF is a zinc metalloprotease that inactivates mitogen‐activated protein kinase kinase inducing cell death, and EF is an adenylyl cyclase impairing host defences. Inhibitors targeting different steps of toxin activity have recently been developed. Anthrax toxin has also been exploited as a therapeutic agent against cancer.

Collaboration


Dive into the Paolo Ascenzi's collaboration.

Researchain Logo
Decentralizing Knowledge