Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paolo Cappella is active.

Publication


Featured researches published by Paolo Cappella.


Molecular Cancer Therapeutics | 2007

PHA-739358, a potent inhibitor of Aurora kinases with a selective target inhibition profile relevant to cancer

Patrizia Carpinelli; Roberta Ceruti; Maria Laura Giorgini; Paolo Cappella; Laura Gianellini; Valter Croci; Anna Degrassi; Gemma Texido; Maurizio Rocchetti; Paola Vianello; Luisa Rusconi; Paola Storici; Paola Zugnoni; Claudio Arrigoni; Chiara Soncini; Cristina Alli; Veronica Patton; Aurelio Marsiglio; Dario Ballinari; Enrico Pesenti; Daniele Fancelli; Jürgen Moll

PHA-739358 is a small-molecule 3-aminopyrazole derivative with strong activity against Aurora kinases and cross-reactivities with some receptor tyrosine kinases relevant for cancer. PHA-739358 inhibits all Aurora kinase family members and shows a dominant Aurora B kinase inhibition–related cellular phenotype and mechanism of action in cells in vitro and in vivo. p53 status–dependent endoreduplication is observed upon treatment of cells with PHA-739358, and phosphorylation of histone H3 in Ser10 is inhibited. The compound has significant antitumor activity in different xenografts and spontaneous and transgenic animal tumor models and shows a favorable pharmacokinetic and safety profile. In vivo target modulation is observed as assessed by the inhibition of the phosphorylation of histone H3, which has been validated preclinically as a candidate biomarker for the clinical phase. Pharmacokinetics/pharmacodynamics modeling was used to define drug potency and to support the prediction of active clinical doses and schedules. We conclude that PHA-739358, which is currently tested in clinical trials, has great therapeutic potential in anticancer therapy in a wide range of cancers. [Mol Cancer Ther 2007;6(12):3158–68]


Clinical Cancer Research | 2006

PHA-680632, a novel Aurora kinase inhibitor with potent antitumoral activity.

Chiara Soncini; Patrizia Carpinelli; Laura Gianellini; Daniele Fancelli; Paola Vianello; Luisa Rusconi; Paola Storici; Paola Zugnoni; Enrico Pesenti; Valter Croci; Roberta Ceruti; Maria Laura Giorgini; Paolo Cappella; Dario Ballinari; Francesco Sola; Mario Varasi; Rodrigo Bravo; Jürgen Moll

Purpose: Aurora kinases play critical roles during mitosis in chromosome segregation and cell division. The aim of this study was to determine the preclinical profile of a novel, highly selective Aurora kinase inhibitor, PHA-680632, as a candidate for anticancer therapy. Experimental Design: The activity of PHA-680632 was assayed in a biochemical ATP competitive kinase assay. A wide panel of cell lines was evaluated for antiproliferative activity. Cell cycle analysis. Immunohistochemistry, Western blotting, and Array Scan were used to follow mechanism of action and biomarker modulation. Specific knockdown of the targets by small interfering RNA was followed to validate the observed phenotypes. Efficacy was determined in different xenograft models and in a transgenic animal model of breast cancer. Results: PHA-680632 is active on a wide range of cancer cell lines and shows significant tumor growth inhibition in different animal tumor models at well-tolerated doses. The mechanism of action of PHA-680632 is in agreement with inhibition of Aurora kinases. Histone H3 phosphorylation in Ser10 is mediated by Aurora B kinase, and our kinetic studies on its inhibition by PHA-680632 in vitro and in vivo show that phosphorylation of histone H3 is a good biomarker to follow activity of PHA-680632. Conclusions: PHA-680632 is the first representative of a new class of Aurora inhibitors with a high potential for further development as an anticancer therapeutic. On treatment, different cell lines respond differentially, suggesting the absence of critical cell cycle checkpoints that could be the basis for a favorable therapeutic window.


Cancer Research | 2010

Targeting the Mitotic Checkpoint for Cancer Therapy with Nms-P715, an Inhibitor of Mps1 Kinase.

Riccardo Colombo; Marina Caldarelli; Milena Mennecozzi; Maria Laura Giorgini; Francesco Sola; Paolo Cappella; Claudia Perrera; Stefania Re Depaolini; Luisa Rusconi; Ulisse Cucchi; Nilla Avanzi; Jay Aaron Bertrand; Roberto Bossi; Enrico Pesenti; Arturo Galvani; Antonella Isacchi; Francesco Colotta; Daniele Donati; Jurgen Moll

MPS1 kinase is a key regulator of the spindle assembly checkpoint (SAC), a mitotic mechanism specifically required for proper chromosomal alignment and segregation. It has been found aberrantly overexpressed in a wide range of human tumors and is necessary for tumoral cell proliferation. Here we report the identification and characterization of NMS-P715, a selective and orally bioavailable MPS1 small-molecule inhibitor, which selectively reduces cancer cell proliferation, leaving normal cells almost unaffected. NMS-P715 accelerates mitosis and affects kinetochore components localization causing massive aneuploidy and cell death in a variety of tumoral cell lines and inhibits tumor growth in preclinical cancer models. Inhibiting the SAC could represent a promising new approach to selectively target cancer cells.


Cytometry Part A | 2008

A novel method based on click chemistry, which overcomes limitations of cell cycle analysis by classical determination of BrdU incorporation, allowing multiplex antibody staining

Paolo Cappella; Fabio Gasparri; Maurizio Pulici; Jürgen Moll

Quantification of BrdU incorporation into DNA is a widely used technique to assess the cell cycle status of cells. DNA denaturation is required for BrdU detection with the drawback that most protein epitopes are destroyed and classical antibody staining techniques for multiplex analysis are not possible. To address this issue we have developed a novel method that overcomes the DNA denaturation step but still allows detection of BrdU. Cells were pulsed for a short time by 5‐ethynyl‐2′‐deoxyuridine, which is incorporated into DNA. The exposed nucleotide alkyne group of DNA was then derivatized in physiologic conditions by the copper (I)‐catalyzed azide‐alkyne cycloaddition (CuAAC) using BrdU azides. The resulting DNA‐bound bromouracil moiety was subsequently detected by commercial anti‐BrdU mAb without the need for a denaturation step. Continuous labeling with EdU showed a slightly increased anti‐proliferative activity compared to BrdU. However, using a lower concentration of EdU for labeling can compensate for this. Alkynyl tags could be detected quickly by a highly specific reaction using BrdU azides. Fluorescence quenching by the DNA dye PI using both BrdU azides was negligible. Our labeling method is suitable for FCM and HCA and shows a higher signal to noise ratio than other methods. This method also allowed multiplex analysis by simultaneous detection of EdU‐BrdU, caspase‐3, and phospho‐histone 3 mAbs, proving sensitivity and feasibility of this new technique. In addition, it has the potential for use in vivo, as exemplified for bone marrow studies. We have established a new method to determine the position of cells in the cell cycle. This is superior when compared to traditional BrdU detection since it allows multiplex analysis, is more sensitive and shows less quenching with PI. The method provides new opportunities to investigate changes in protein expression at different cell cycle stages using pulse labeling experiments.


Journal of Medicinal Chemistry | 2010

Identification of 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivatives as a new class of orally and selective Polo-like kinase 1 inhibitors

Italo Beria; Dario Ballinari; Jay Aaron Bertrand; Daniela Borghi; Roberto Bossi; Maria Gabriella Brasca; Paolo Cappella; Michele Caruso; Walter Ceccarelli; Antonella Ciavolella; Cinzia Cristiani; Valter Croci; Anna De Ponti; Gabriele Fachin; Ron Ferguson; Jacqueline Lansen; Jurgen Moll; Enrico Pesenti; Helena Posteri; Rita Perego; Maurizio Rocchetti; Paola Storici; Daniele Volpi; Barbara Valsasina

Polo-like kinase 1 (Plk1) is a fundamental regulator of mitotic progression whose overexpression is often associated with oncogenesis and therefore is recognized as an attractive therapeutic target in the treatment of proliferative diseases. Here we discuss the structure-activity relationship of the 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline class of compounds that emerged from a high throughput screening (HTS) campaign as potent inhibitors of Plk1 kinase. Furthermore, we describe the discovery of 49, 8-{[2-methoxy-5-(4-methylpiperazin-1-yl)phenyl]amino}-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide, as a highly potent and specific ATP mimetic inhibitor of Plk1 (IC(50) = 0.007 microM) as well as its crystal structure in complex with the methylated Plk1(36-345) construct. Compound 49 was active in cell proliferation against different tumor cell lines with IC(50) values in the submicromolar range and active in vivo in the HCT116 xenograft model where it showed 82% tumor growth inhibition after repeated oral administration.


Molecular Cancer Therapeutics | 2012

NMS-P937, an orally available, specific small-molecule polo-like kinase 1 inhibitor with antitumor activity in solid and hematologic malignancies.

Barbara Valsasina; Italo Beria; Cristina Alli; Rachele Alzani; Nilla Avanzi; Dario Ballinari; Paolo Cappella; Michele Caruso; Alessia Casolaro; Antonella Ciavolella; Ulisse Cucchi; Anna De Ponti; Eduard R. Felder; Francesco Fiorentini; Arturo Galvani; Laura Gianellini; Maria Laura Giorgini; Antonella Isacchi; Jacqueline Lansen; Enrico Pesenti; Simona Rizzi; Maurizio Rocchetti; Francesco Sola; Jurgen Moll

Polo-like kinase 1 (PLK1) is a serine/threonine protein kinase considered to be the master player of cell-cycle regulation during mitosis. It is indeed involved in centrosome maturation, bipolar spindle formation, chromosome separation, and cytokinesis. PLK1 is overexpressed in a variety of human tumors and its overexpression often correlates with poor prognosis. Although five different PLKs are described in humans, depletion or inhibition of kinase activity of PLK1 is sufficient to induce cell-cycle arrest and apoptosis in cancer cell lines and in xenograft tumor models. NMS-P937 is a novel, orally available PLK1-specific inhibitor. The compound shows high potency in proliferation assays having low nanomolar activity on a large number of cell lines, both from solid and hematologic tumors. NMS-P937 potently causes a mitotic cell-cycle arrest followed by apoptosis in cancer cell lines and inhibits xenograft tumor growth with clear PLK1-related mechanism of action at well-tolerated doses in mice after oral administration. In addition, NMS-P937 shows potential for combination in clinical settings with approved cytotoxic drugs, causing tumor regression in HT29 human colon adenocarcinoma xenografts upon combination with irinotecan and prolonged survival of animals in a disseminated model of acute myelogenous leukemia in combination with cytarabine. NMS-P937, with its favorable pharmacologic parameters, good oral bioavailability in rodent and nonrodent species, and proven antitumor activity in different preclinical models using a variety of dosing regimens, potentially provides a high degree of flexibility in dosing schedules and warrants investigation in clinical settings. Mol Cancer Ther; 11(4); 1006–16. ©2012 AACR.


Apoptosis | 2011

In vivo imaging of early stage apoptosis by measuring real-time caspase-3/7 activation

Matteo Scabini; Fabio Stellari; Paolo Cappella; Sara Rizzitano; Gemma Texido; Enrico Pesenti

In vivo imaging of apoptosis in a preclinical setting in anticancer drug development could provide remarkable advantages in terms of translational medicine. So far, several imaging technologies with different probes have been used to achieve this goal. Here we describe a bioluminescence imaging approach that uses a new formulation of Z-DEVD-aminoluciferin, a caspase 3/7 substrate, to monitor in vivo apoptosis in tumor cells engineered to express luciferase. Upon apoptosis induction, Z-DEVD-aminoluciferin is cleaved by caspase 3/7 releasing aminoluciferin that is now free to react with luciferase generating measurable light. Thus, the activation of caspase 3/7 can be measured by quantifying the bioluminescent signal. Using this approach, we have been able to monitor caspase-3 activation and subsequent apoptosis induction after camptothecin and temozolomide treatment on xenograft mouse models of colon cancer and glioblastoma, respectively. Treated mice showed more than 2-fold induction of Z-DEVD-aminoluciferin luminescent signal when compared to the untreated group. Combining D-luciferin that measures the total tumor burden, with Z-DEVD-aminoluciferin that assesses apoptosis induction via caspase activation, we confirmed that it is possible to follow non-invasively tumor growth inhibition and induction of apoptosis after treatment in the same animal over time. Moreover, here we have proved that following early apoptosis induction by caspase 3 activation is a good biomarker that accurately predicts tumor growth inhibition by anti-cancer drugs in engineered colon cancer and glioblastoma cell lines and in their respective mouse xenograft models.


Current protocols in immunology | 2015

Cell Proliferation Method: Click Chemistry Based on BrdU Coupling for Multiplex Antibody Staining

Paolo Cappella; Fabio Gasparri; Maurizio Pulici; Jurgen Moll

Determination of incorporation of the thymidine analog 5‐bromo‐2′‐deoxyuridine (BrdU) into DNA is a widely used method to analyze the cell cycle (see UNIT 7.7). However, DNA denaturation is required for BrdU detection with the consequence that most protein epitopes are destroyed and their immunocytochemical detection for multiplex analysis is not possible. A novel assay is presented for identifying cells in active S‐phase that does not require the DNA denaturation step but nevertheless detects BrdU. For this purpose, cells were pulsed for a short time by an alkenyl deoxyuridine (5‐ethynyl‐2′‐deoxyuridine, EdU), which is incorporated into DNA. The nucleotide exposed ethynyl residue was then derivatized by a copper‐catalyzed cycloaddition reaction (“click chemistry” coupling) using a BrdU azide probe. The resulting DNA‐bound bromouracil moieties were then detected by commercial anti‐BrdU monoclonal antibodies without the need for a denaturation step. This method has been tested using several cell lines and is preferred over traditional BrdU detection since it is more sensitive and allows multicolor and multiplex analysis in FCM and imaging. Curr. Protoc. Cytom. 58:7.34.1‐7.34.13.


Journal of Biological Chemistry | 2010

Identification of Myb-binding protein 1A (MYBBP1A) as a novel substrate for aurora B kinase.

Claudia Perrera; Riccardo Colombo; Barbara Valsasina; Patrizia Carpinelli; Sonia Troiani; Michele Modugno; Laura Gianellini; Paolo Cappella; Antonella Isacchi; Jurgen Moll; Luisa Rusconi

Aurora kinases are mitotic enzymes involved in centrosome maturation and separation, spindle assembly and stability, and chromosome condensation, segregation, and cytokinesis and represent well known targets for cancer therapy because their deregulation has been linked to tumorigenesis. The availability of suitable markers is of crucial importance to investigate the functions of Auroras and monitor kinase inhibition in in vivo models and in clinical trials. Extending the knowledge on Aurora substrates could help to better understand their biology and could be a source for clinical biomarkers. Using biochemical, mass spectrometric, and cellular approaches, we identified MYBBP1A as a novel Aurora B substrate and serine 1303 as the major phosphorylation site. MYBBP1A is phosphorylated in nocodazole-arrested cells and is dephosphorylated upon Aurora B silencing or by treatment with Danusertib, a small molecule inhibitor of Aurora kinases. Furthermore, we show that MYBBP1A depletion by RNA interference causes mitotic progression delay and spindle assembly defects. MYBBP1A has until now been described as a nucleolar protein, mainly involved in transcriptional regulation. The results presented herein show MYBBP1A as a novel Aurora B kinase substrate and reveal a not yet recognized link of this nucleolar protein to mitosis.


Cancer Research | 2009

Quantitative Assessment of the Complex Dynamics of G1, S, and G2-M Checkpoint Activities

Paolo Ubezio; Monica Lupi; Davide Branduardi; Paolo Cappella; Edoardo Cavallini; Valentina Colombo; Giada Matera; Claudia Natoli; Daniela Tomasoni; Maurizio D'Incalci

Although studies of cell cycle perturbation and growth inhibition are common practice, they are unable to properly measure the activity of cell cycle checkpoints and frequently convey misinterpretation or incomplete pictures of the response to anticancer treatment. A measure of the strength of the treatment response of all checkpoints, with their time and dose dependence, provides a new way to evaluate the antiproliferative activity of the drugs, fully accounting for variation of the cell fates within a cancer cell line. This is achieved with an interdisciplinary approach, joining information from independent experimental platforms and interpreting all data univocally with a simple mathematical model of cell cycle proliferation. The model connects the dynamics of checkpoint activities at the molecular level with population-based flow cytometric and growth inhibition time course measures. With this method, the response to five drugs, characterized by different molecular mechanisms of action, was studied in a synoptic way, producing a publicly available database of time course measures with different techniques in a range of drug concentrations, from sublethal to frankly cytotoxic. Using the computer simulation program, we were able to closely reproduce all the measures in the experimental database by building for each drug a scenario of the time and dose dependence of G(1), S, and G(2)-M checkpoint activities. We showed that the response to each drug could be described as a combination of a few types of activities, each with its own strength and concentration threshold. The results gained from this method provide a means for exploring new concepts regarding the drug-cell cycle interaction.

Collaboration


Dive into the Paolo Cappella's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbara Valsasina

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Paola Storici

Elettra Sincrotrone Trieste

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge