Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paolo Degan is active.

Publication


Featured researches published by Paolo Degan.


The EMBO Journal | 2006

New functions of XPC in the protection of human skin cells from oxidative damage

Mariarosaria D'Errico; Eleonora Parlanti; Massimo Teson; Bruno M. Bernardes de Jesus; Paolo Degan; Angelo Calcagnile; Pawel Jaruga; Magnar Bjørås; Marco Crescenzi; Antonia M. Pedrini; Jean-Marc Egly; Giovanna Zambruno; Miria Stefanini; Miral Dizdaroglu; Eugenia Dogliotti

Xeroderma pigmentosum (XP) C is involved in the recognition of a variety of bulky DNA‐distorting lesions in nucleotide excision repair. Here, we show that XPC plays an unexpected and multifaceted role in cell protection from oxidative DNA damage. XP‐C primary keratinocytes and fibroblasts are hypersensitive to the killing effects of DNA‐oxidizing agents and this effect is reverted by expression of wild‐type XPC. Upon oxidant exposure, XP‐C primary keratinocytes and fibroblasts accumulate 8,5′‐cyclopurine 2′‐deoxynucleosides in their DNA, indicating that XPC is involved in their removal. In the absence of XPC, a decrease in the repair rate of 8‐hydroxyguanine (8‐OH‐Gua) is also observed. We demonstrate that XPC–HR23B complex acts as cofactor in base excision repair of 8‐OH‐Gua, by stimulating the activity of its specific DNA glycosylase OGG1. In vitro experiments suggest that the mechanism involved is a combination of increased loading and turnover of OGG1 by XPC‐HR23B complex. The accumulation of endogenous oxidative DNA damage might contribute to increased skin cancer risk and account for internal cancers reported for XP‐C patients.


Current Biology | 2002

The Mammalian Mismatch Repair Pathway Removes DNA 8-oxodGMP Incorporated from the Oxidized dNTP Pool

Claudia Colussi; Eleonora Parlanti; Paolo Degan; Gabriele Aquilina; Deborah E. Barnes; Peter Macpherson; Peter Karran; Marco Crescenzi; Eugenia Dogliotti; Margherita Bignami

Mismatch repair (MMR) corrects replication errors. It requires the MSH2, MSH6, MLH1, and PMS2 proteins which comprise the MutSalpha and MutLalpha heterodimers. Inactivation of MSH2 or MLH1 in human tumors greatly increases spontaneous mutation rates. Oxidation produces many detrimental DNA alterations against which cells deploy multiple protective strategies. The Ogg-1 DNA glycosylase initiates base excision repair (BER) of 8-oxoguanine (8-oxoG) from 8-oxoG:C pairs. The Myh DNA glycosylase removes mismatched adenines incorporated opposite 8-oxoG during replication. Subsequent BER generates 8-oxoG:C pairs, a substrate for excision by Ogg-1. MTH1-an 8-oxodGTPase which eliminates 8-oxodGTP from the dNTP pool-affords additional protection by minimizing 8-oxodGMP incorporation during replication. Here we show that the dNTP pool is, nevertheless, an important source of DNA 8-oxoG and that MMR provides supplementary protection by excising incorporated 8-oxodGMP. Incorporated 8-oxodGMP contributes significantly to the mutator phenotype of MMR-deficient cells. Thus, although BER of 8-oxoG is independent of Msh2, both steady-state and H(2)O(2)-induced DNA 8-oxoG levels are higher in Msh2-defective cells than in their repair-proficient counterparts. Increased expression of MTH1 in MMR-defective cells significantly reduces steady-state and H(2)O(2)-induced DNA 8-oxoG levels. This reduction dramatically diminishes the spontaneous mutation rate of Msh2(-/-) MEFs.


Cancer Research | 2004

Accumulation of the Oxidative Base Lesion 8-Hydroxyguanine in DNA of Tumor-Prone Mice Defective in Both the Myh and Ogg1 DNA Glycosylases

Maria Teresa Russo; Gabriele De Luca; Paolo Degan; Eleonora Parlanti; Eugenia Dogliotti; Deborah E. Barnes; Tomas Lindahl; Hanjing Yang; Jeffrey H. Miller; Margherita Bignami

The OGG1 and MYH DNA glycosylases prevent the accumulation of DNA 8-hydroxyguanine. In Myh−/− mice, there was no time-dependent accumulation of DNA 8-hydroxyguanine in brain, small intestine, lung, spleen, or kidney. Liver was an exception to this general pattern. Inactivation of both MYH and OGG1 caused an age-associated accumulation of DNA 8-hydroxyguanine in lung and small intestine. The effects of abrogated OGG1 and MYH on hepatic DNA 8-hydroxyguanine levels were additive. Because there is an increased incidence of lung and small intestine cancer in Myh−/−/Ogg1−/− mice, these findings support a causal role for unrepaired oxidized DNA bases in cancer development.


Molecular and Cellular Biology | 2004

The Oxidized Deoxynucleoside Triphosphate Pool Is a Significant Contributor to Genetic Instability in Mismatch Repair-Deficient Cells

Maria Teresa Russo; Monica Francesca Blasi; Federica Chiera; Paola Fortini; Paolo Degan; Peter Macpherson; Masato Furuichi; Yusaku Nakabeppu; Peter Karran; Gabriele Aquilina; Margherita Bignami

ABSTRACT Oxidation is a common form of DNA damage to which purines are particularly susceptible. We previously reported that oxidized dGTP is potentially an important source of DNA 8-oxodGMP in mammalian cells and that the incorporated lesions are removed by DNA mismatch repair (MMR). MMR deficiency is associated with a mutator phenotype and widespread microsatellite instability (MSI). Here, we identify oxidized deoxynucleoside triphosphates (dNTPs) as an important cofactor in this genetic instability. The high spontaneous hprt mutation rate of MMR-defective msh2−/− mouse embryonic fibroblasts was attenuated by expression of the hMTH1 protein, which degrades oxidized purine dNTPs. A high level of hMTH1 abolished their mutator phenotype and restored the hprt mutation rate to normal. Molecular analysis of hprt mutants showed that the presence of hMTH1 reduced the incidence of mutations in all classes, including frameshifts, and also implicated incorporated 2-oxodAMP in the mutator phenotype. In hMSH6-deficient DLD-1 human colorectal carcinoma cells, overexpression of hMTH1 markedly attenuated the spontaneous mutation rate and reduced MSI. It also reduced the incidence of −G and −A frameshifts in the hMLH1-defective DU145 human prostatic cancer cell line. Our findings indicate that incorporation of oxidized purines from the dNTP pool may contribute significantly to the extreme genetic instability of MMR-defective human tumors.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Terminally differentiated muscle cells are defective in base excision DNA repair and hypersensitive to oxygen injury.

Laura Narciso; Paola Fortini; Deborah Pajalunga; Annapaola Franchitto; Pingfang Liu; Paolo Degan; Mathilde Fréchet; Bruce Demple; Marco Crescenzi; Eugenia Dogliotti

The differentiation of skeletal myoblasts is characterized by permanent withdrawal from the cell cycle and fusion into multinucleated myotubes. Muscle cell survival is critically dependent on the ability of cells to respond to oxidative stress. Base excision repair (BER) is the main repair mechanism of oxidative DNA damage. In this study, we compared the levels of endogenous oxidative DNA damage and BER capacity of mouse proliferating myoblasts and their differentiated counterpart, the myotubes. Changes in the expression of oxidative stress marker genes during differentiation, together with an increase in 8-hydroxyguanine DNA levels in terminally differentiated cells, suggested that reactive oxygen species are produced during this process. The repair of 2-deoxyribonolactone, which is exclusively processed by long-patch BER, was impaired in cell extracts from myotubes. The repair of a natural abasic site (a preferred substrate for short-patch BER) also was delayed. The defect in BER of terminally differentiated muscle cells was ascribed to the nearly complete lack of DNA ligase I and to the strong down-regulation of XRCC1 with subsequent destabilization of DNA ligase IIIα. The attenuation of BER in myotubes was associated with significant accumulation of DNA damage as detected by increased DNA single-strand breaks and phosphorylated H2AX nuclear foci upon exposure to hydrogen peroxide. We propose that in skeletal muscle exacerbated by free radical injury, the accumulation of DNA repair intermediates, due to attenuated BER, might contribute to myofiber degeneration as seen in sarcopenia and many muscle disorders.


Cancer Research | 2006

A Human Cell-Based Assay to Evaluate the Effects of Alterations in the MLH1 Mismatch Repair Gene

Monica Francesca Blasi; Ilenia Ventura; Gabriele Aquilina; Paolo Degan; Lucio Bertario; Chiara Bassi; Paolo Radice; Margherita Bignami

We describe a new approach to investigate alterations in the human MLH1 mismatch repair (MMR) gene. This is based on complementation of the phenotype of a MLH1-defective subclone of the ovarian carcinoma A2780 cells by transfection of vectors encoding altered MLH1 proteins. Measurements of resistance (tolerance) to methylating agents, mutation rate at HPRT, microsatellite instability (MSI), and steady-state levels of DNA 8-oxoguanine were used to define the MMR status of transfected clones. The approach was validated by transfecting cDNA of wild-type (WT) MLH1, cDNAs bearing two previously identified polymorphisms (I219V and I219L) and two with confirmed hereditary nonpolyposis colorectal cancer (HNPCC) syndrome mutations (G224D and G67R). A low-level expression of two MLH1 polymorphisms partially reversed methylation tolerance and the mutator phenotype, including MSI. Higher levels of I219V resulted in full restoration of these properties to WT. Increased expression of I129L did not fully complement the MLH1 defect, because there was a simultaneous escalation in the level of oxidative DNA damage. The findings confirmed the important relationship between deficient MMR and increased levels of oxidative DNA damage. Mutations from Italian HNPCC families (G224D, G67R, N635S, and K618A) were all ineffective at reversing the phenotype of the MLH1-defective A2780 cells. One (K618A) was identified as a low penetrance mutation based on clinical and genetic observations.


PLOS Genetics | 2008

A role for oxidized DNA precursors in Huntington's disease-like striatal neurodegeneration.

Gabriele De Luca; Maria Teresa Russo; Paolo Degan; Cecilia Tiveron; Andrea Zijno; Ettore Meccia; Ilenia Ventura; Elisabetta Mattei; Yusaku Nakabeppu; Marco Crescenzi; Rita Pepponi; Antonella Pèzzola; Patrizia Popoli; Margherita Bignami

Several human neurodegenerative disorders are characterized by the accumulation of 8-oxo-7,8-dihydroguanine (8-oxodG) in the DNA of affected neurons. This can occur either through direct oxidation of DNA guanine or via incorporation of the oxidized nucleotide during replication. Hydrolases that degrade oxidized purine nucleoside triphosphates normally minimize this incorporation. hMTH1 is the major human hydrolase. It degrades both 8-oxodGTP and 8-oxoGTP to the corresponding monophosphates. To investigate whether the incorporation of oxidized nucleic acid precursors contributes to neurodegeneration, we constructed a transgenic mouse in which the human hMTH1 8-oxodGTPase is expressed. hMTH1 expression protected embryonic fibroblasts and mouse tissues against the effects of oxidants. Wild-type mice exposed to 3-nitropropionic acid develop neuropathological and behavioural symptoms that resemble those of Huntingtons disease. hMTH1 transgene expression conferred a dramatic protection against these Huntingtons disease–like symptoms, including weight loss, dystonia and gait abnormalities, striatal degeneration, and death. In a complementary approach, an in vitro genetic model for Huntingtons disease was also used. hMTH1 expression protected progenitor striatal cells containing an expanded CAG repeat of the huntingtin gene from toxicity associated with expression of the mutant huntingtin. The findings implicate oxidized nucleic acid precursors in the neuropathological features of Huntingtons disease and identify the utilization of oxidized nucleoside triphosphates by striatal cells as a significant contributor to the pathogenesis of this disorder.


Nucleic Acids Research | 2013

Understanding the role of the Q338H MUTYH variant in oxidative damage repair

Eleonora Turco; Ilenia Ventura; Anna Minoprio; Maria Teresa Russo; Paola Torreri; Paolo Degan; Sara Molatore; Guglielmina Nadia Ranzani; Margherita Bignami; Filomena Mazzei

The MUTYH DNA–glycosylase is indirectly engaged in the repair of the miscoding 7,8-dihydro-8-oxo-2′-deoxyguanine (8-oxodG) lesion by removing adenine erroneously incorporated opposite the oxidized purine. Inherited biallelic mutations in the MUTYH gene are responsible for a recessive syndrome, the MUTYH-associated polyposis (MAP), which confers an increased risk of colorectal cancer. In this study, we functionally characterized the Q338H variant using recombinant proteins, as well as cell-based assays. This is a common variant among human colorectal cancer genes, which is generally considered, unrelated to the MAP phenotype but recently indicated as a low-penetrance allele. We demonstrate that the Q338H variant retains a wild-type DNA–glycosylase activity in vitro, but it shows a reduced ability to interact with the replication sensor RAD9:RAD1:HUS1 (9–1–1) complex. In comparison with Mutyh−/− mouse embryo fibroblasts expressing a wild-type MUTYH cDNA, the expression of Q338H variant was associated with increased levels of DNA 8-oxodG, hypersensitivity to oxidant and accumulation of the population in the S phase of the cell cycle. Thus, an inefficient interaction of MUTYH with the 9–1–1 complex leads to a repair-defective phenotype, indicating that a proper communication between MUTYH enzymatic function and the S phase checkpoint is needed for effective repair of oxidative damage.


Aging Cell | 2013

Prolonged lifespan with enhanced exploratory behavior in mice overexpressing the oxidized nucleoside triphosphatase hMTH1

Gabriele De Luca; Ilenia Ventura; Valentina Sanghez; Maria Teresa Russo; Maria Antonietta Ajmone-Cat; Emanuele Cacci; Alberto Martire; Patrizia Popoli; Germana Falcone; Flavia Michelini; Marco Crescenzi; Paolo Degan; Luisa Minghetti; Margherita Bignami; Gemma Calamandrei

The contribution that oxidative damage to DNA and/or RNA makes to the aging process remains undefined. In this study, we used the hMTH1‐Tg mouse model to investigate how oxidative damage to nucleic acids affects aging. hMTH1‐Tg mice express high levels of the hMTH1 hydrolase that degrades 8‐oxodGTP and 8‐oxoGTP and excludes 8‐oxoguanine from both DNA and RNA. Compared to wild‐type animals, hMTH1‐overexpressing mice have significantly lower steady‐state levels of 8‐oxoguanine in both nuclear and mitochondrial DNA of several organs, including the brain. hMTH1 overexpression prevents the age‐dependent accumulation of DNA 8‐oxoguanine that occurs in wild‐type mice. These lower levels of oxidized guanines are associated with increased longevity and hMTH1‐Tg animals live significantly longer than their wild‐type littermates. Neither lipid oxidation nor overall antioxidant status is significantly affected by hMTH1 overexpression. At the cellular level, neurospheres derived from adult hMTH1‐Tg neural progenitor cells display increased proliferative capacity and primary fibroblasts from hMTH1‐Tg embryos do not undergo overt senescence in vitro. The significantly lower levels of oxidized DNA/RNA in transgenic animals are associated with behavioral changes. These mice show reduced anxiety and enhanced investigation of environmental and social cues. Longevity conferred by overexpression of a single nucleotide hydrolase in hMTH1‐Tg animals is an example of lifespan extension associated with healthy aging. It provides a link between aging and oxidative damage to nucleic acids.


Neurobiology of Disease | 2013

HMTH1 expression protects mitochondria from Huntington's disease-like impairment

Ilenia Ventura; Maria Teresa Russo; Chiara De Nuccio; Gabriele De Luca; Paolo Degan; Antonietta Bernardo; Sergio Visentin; Luisa Minghetti; Margherita Bignami

Huntington disease (HD) is a neurodegenerative disease caused by expansion of CAG repeats in the huntingtin (Htt) gene. The expression of hMTH1, the human hydrolase that degrades oxidized purine nucleoside triphosphates, grants protection in a chemical HD mouse model in which HD-like features are induced by the mitochondrial toxin 3-nitropropionic acid (3-NP). To further examine the relationship between oxidized dNTPs and HD-like neurodegeneration, we studied the effects of hMTH1 expression in a genetic cellular model for HD, such as striatal cells expressing mutant htt (HdhQ111). hMTH1 expression protected these cells from 3-NP and H2O2-induced killing, by counteracting the mutant htt-dependent increased vulnerability and accumulation of nuclear and mitochondrial DNA 8-hydroxyguanine levels. hMTH1 expression reverted the decreased mitochondrial membrane potential characteristic of HdhQ111 cells and delayed the increase in mitochondrial reactive oxygen species associated with 3-NP treatment. Further indications of hMTH1-mediated mitochondrial protection are the partial reversion of 3-NP-induced alterations in mitochondrial morphology and the modulation of DRP1 and MFN1 proteins, which control fusion/fission rates of mitochondria. Finally, in line with the in vitro findings, upon 3-NP in vivo treatment, 8-hydroxyguanine levels in mitochondrial DNA from heart, muscle and brain are significantly lower in transgenic hMTH1-expressing mice than in wild-type animals.

Collaboration


Dive into the Paolo Degan's collaboration.

Top Co-Authors

Avatar

Margherita Bignami

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Eugenia Dogliotti

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Maria Teresa Russo

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Ilenia Ventura

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Marco Crescenzi

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Gabriele De Luca

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Angelo Calcagnile

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Gabriele Aquilina

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Paola Fortini

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Chiara De Nuccio

Istituto Superiore di Sanità

View shared research outputs
Researchain Logo
Decentralizing Knowledge