Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paolo Domenici is active.

Publication


Featured researches published by Paolo Domenici.


Ecology Letters | 2008

Marine reserves: size and age do matter

Joachim Claudet; Craig W. Osenberg; Lisandro Benedetti-Cecchi; Paolo Domenici; José-Antonio García-Charton; Angel Pérez-Ruzafa; Fabio Badalamenti; Just T. Bayle-Sempere; Alberto Brito; Fabio Bulleri; Jean-Michel Culioli; Mark Dimech; Jesús M. Falcón; I. Guala; Marco Milazzo; Julio Sánchez-Meca; Paul J. Somerfield; Ben Stobart; Frederic Vandeperre; Carlos Valle; Serge Planes

Marine reserves are widely used throughout the world to prevent overfishing and conserve biodiversity, but uncertainties remain about their optimal design. The effects of marine reserves are heterogeneous. Despite theoretical findings, empirical studies have previously found no effect of size on the effectiveness of marine reserves in protecting commercial fish stocks. Using 58 datasets from 19 European marine reserves, we show that reserve size and age do matter: Increasing the size of the no-take zone increases the density of commercial fishes within the reserve compared with outside; whereas the size of the buffer zone has the opposite effect. Moreover, positive effects of marine reserve on commercial fish species and species richness are linked to the time elapsed since the establishment of the protection scheme. The reserve size-dependency of the response to protection has strong implications for the spatial management of coastal areas because marine reserves are used for spatial zoning.


Nature Climate Change | 2012

Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function

Göran E. Nilsson; Danielle L. Dixson; Paolo Domenici; Mark I. McCormick; Christina Sørensen; Sue-Ann Watson; Philip L. Munday

A study of two species of coral reef fish demonstrates that the anticipated increase in atmospheric carbon dioxide directly interferes with neurotransmitter function in their larvae, a hitherto unrecognized problem for marine fishes. Predicted future CO2 levels have been found to alter sensory responses and behaviour of marine fishes. Changes include increased boldness and activity, loss of behavioural lateralization, altered auditory preferences and impaired olfactory function1,2,3,4,5. Impaired olfactory function makes larval fish attracted to odours they normally avoid, including ones from predators and unfavourable habitats1,3. These behavioural alterations have significant effects on mortality that may have far-reaching implications for population replenishment, community structure and ecosystem function2,6. However, the underlying mechanism linking high CO2 to these diverse responses has been unknown. Here we show that abnormal olfactory preferences and loss of behavioural lateralization exhibited by two species of larval coral reef fish exposed to high CO2 can be rapidly and effectively reversed by treatment with an antagonist of the GABA-A receptor. GABA-A is a major neurotransmitter receptor in the vertebrate brain. Thus, our results indicate that high CO2 interferes with neurotransmitter function, a hitherto unrecognized threat to marine populations and ecosystems. Given the ubiquity and conserved function of GABA-A receptors, we predict that rising CO2 levels could cause sensory and behavioural impairment in a wide range of marine species, especially those that tightly control their acid–base balance through regulatory changes in HCO3− and Cl− levels.


Ecological Applications | 2010

Marine reserves: fish life history and ecological traits matter.

Joachim Claudet; Craig W. Osenberg; Paolo Domenici; Fabio Badalamenti; Marco Milazzo; Jesús M. Falcón; Iacopo Bertocci; Lisandro Benedetti-Cecchi; José Antonio García-Charton; Raquel Goñi; Joseph A. Borg; Aitor Forcada; G. A. de Lucia; Angel Pérez-Ruzafa; Pedro Afonso; Alberto Brito; I. Guala; L. le Diréach; Pablo Sanchez-Jerez; Paul J. Somerfield; Serge Planes

Marine reserves are assumed to protect a wide range of species from deleterious effects stemming from exploitation. However, some species, due to their ecological characteristics, may not respond positively to protection. Very little is known about the effects of life history and ecological traits (e.g., mobility, growth, and habitat) on responses of fish species to marine reserves. Using 40 data sets from 12 European marine reserves, we show that there is significant variation in the response of different species of fish to protection and that this heterogeneity can be explained, in part, by differences in their traits. Densities of targeted size-classes of commercial species were greater in protected than unprotected areas. This effect of protection increased as the maximum body size of the targeted species increased, and it was greater for species that were not obligate schoolers. However, contrary to previous theoretical findings, even mobile species with wide home ranges benefited from protection: the effect of protection was at least as strong for mobile species as it was for sedentary ones. Noncommercial bycatch and unexploited species rarely responded to protection, and when they did (in the case of unexploited bentho-pelagic species), they exhibited the opposite response: their densities were lower inside reserves. The use of marine reserves for marine conservation and fisheries management implies that they should ensure protection for a wide range of species with different life-history and ecological traits. Our results suggest this is not the case, and instead that effects vary with economic value, body size, habitat, depth range, and schooling behavior.


Biology Letters | 2012

Elevated carbon dioxide affects behavioural lateralization in a coral reef fish

Paolo Domenici; Bridie J. M. Allan; Mark I. McCormick; Philip L. Munday

Elevated carbon dioxide (CO2) has recently been shown to affect chemosensory and auditory behaviour, and activity levels of larval reef fishes, increasing their risk of predation. However, the mechanisms underlying these changes are unknown. Behavioural lateralization is an expression of brain functional asymmetries, and thus provides a unique test of the hypothesis that elevated CO2 affects brain function in larval fishes. We tested the effect of near-future CO2 concentrations (880 µatm) on behavioural lateralization in the reef fish, Neopomacentrus azysron. Individuals exposed to current-day or elevated CO2 were observed in a detour test where they made repeated decisions about turning left or right. No preference for right or left turns was observed at the population level. However, individual control fish turned either left or right with greater frequency than expected by chance. Exposure to elevated-CO2 disrupted individual lateralization, with values that were not different from a random expectation. These results provide compelling evidence that elevated CO2 directly affects brain function in larval fishes. Given that lateralization enhances performance in a number of cognitive tasks and anti-predator behaviours, it is possible that a loss of lateralization could increase the vulnerability of larval fishes to predation in a future high-CO2 ocean.


Trends in Ecology and Evolution | 2013

Environmental stressors alter relationships between physiology and behaviour.

Shaun S. Killen; Stefano Marras; Neil B. Metcalfe; David J. McKenzie; Paolo Domenici

Although correlations have frequently been observed between specific physiological and behavioural traits across a range of animal taxa, the nature of these associations has been shown to vary. Here we argue that a major source of this inconsistency is the influence of environmental stressors, which seem capable of revealing, masking, or modulating covariation in physiological and behavioural traits. These effects appear to be mediated by changes in the observed variation of traits and differential sensitivity to stressors among phenotypes. Considering that wild animals routinely face a range of biotic and abiotic stressors, increased knowledge of these effects is imperative for understanding the causal mechanisms of a range of ecological phenomena and evolutionary responses to stressors associated with environmental change.


Royal Society of London. Proceedings B. Biological Sciences; 275(1631), pp 195-201 (2008) | 2008

Predator-induced morphology enhances escape locomotion in crucian carp

Paolo Domenici; Håkan Turesson; Jakob Brodersen; Christer Brönmark

Fishes show a remarkable diversity of shapes which have been associated with their swimming abilities and anti-predator adaptations. The crucian carp (Carassius carassius) provides an extreme example of phenotypic plasticity in body shape which makes it a unique model organism for evaluating the relationship between body form and function in fishes. In crucian carp, a deep body is induced by the presence of pike (Esox lucius), and this results in lower vulnerability to gape-limited predators, such as pike itself. Here, we demonstrate that deep-bodied crucian carp attain higher speed, acceleration and turning rate during anti-predator responses than shallow-bodied crucian carp. Therefore, a predator-induced morphology in crucian carp enhances their escape locomotor performance. The deep-bodied carp also show higher percentage of muscle mass. Therefore, their superior performance in escape swimming may be due to a combination of higher muscle power and higher thrust.


Philosophical Transactions of the Royal Society B | 2007

Hypoxia and the antipredator behaviours of fishes

Paolo Domenici; C Lefrançois; A Shingles

Hypoxia is a phenomenon occurring in marine coastal areas with increasing frequency. While hypoxia has been documented to affect fish activity and metabolism, recent evidence shows that hypoxia can also have a detrimental effect on various antipredator behaviours. Here, we review such evidence with a focus on the effect of hypoxia on fish escape responses, its modulation by aquatic surface respiration (ASR) and schooling behaviour. The main effect of hypoxia on escape behaviour was found in responsiveness and directionality. Locomotor performance in escapes was expected to be relatively independent of hypoxia, since escape responses are fuelled anaerobically. However, hypoxia decreased locomotor performance in some species (Mugilidae) although only in the absence of ASR in severe hypoxia. ASR allows fish to show higher escape performance than fish staying in the water column where hypoxia occurs. This situation provides a trade-off whereby fish may perform ASR in order to avoid the detrimental effects of hypoxia, although they would be subjected to higher exposure to aerial predation. As a result of this trade-off, fishes appear to minimize surfacing behaviour in the presence of aerial predators and to surface near shelters, where possible. For many fish species, schooling can be an effective antipredator behaviour. Severe hypoxia may lead to the disruption of the school unit. At moderate levels, hypoxia can increase school volume and can change the shuffling behaviour of individuals. By altering school structure and dynamics, hypoxia may affect the well functioning of schooling in terms of synchronization and execution of antipredator manoeuvres. School structure and volume appear to be the results of numerous trade-offs, where school shape may be dictated by the presence of predators, the need for energy saving via hydrodynamic advantages and oxygen level. The effects of hypoxia on aquatic organisms can be taxon specific. While hypoxia may not necessarily increase the vulnerability of fish subject to predation by other fish (since feeding in fish also decreases in hypoxia), predators from other taxa such as birds, jellyfish or aquatic mammals may take advantage of the detrimental effects of hypoxia on fish escape ability. Therefore, the effect of hypoxia on fish antipredator behaviours may have major consequences for the composition of aquatic communities.


The Journal of Experimental Biology | 2011

Animal escapology I: theoretical issues and emerging trends in escape trajectories

Paolo Domenici; Jonathan M. Blagburn; Jonathan P. Bacon

Summary Escape responses are used by many animal species as their main defence against predator attacks. Escape success is determined by a number of variables; important are the directionality (the percentage of responses directed away from the threat) and the escape trajectories (ETs) measured relative to the threat. Although logic would suggest that animals should always turn away from a predator, work on various species shows that these away responses occur only approximately 50–90% of the time. A small proportion of towards responses may introduce some unpredictability and may be an adaptive feature of the escape system. Similar issues apply to ETs. Theoretically, an optimal ET can be modelled on the geometry of predator–prey encounters. However, unpredictability (and hence high variability) in trajectories may be necessary for preventing predators from learning a simple escape pattern. This review discusses the emerging trends in escape trajectories, as well as the modulating key factors, such as the surroundings and body design. The main ET patterns identified are: (1) high ET variability within a limited angular sector (mainly 90–180 deg away from the threat; this variability is in some cases based on multiple peaks of ETs), (2) ETs that allow sensory tracking of the threat and (3) ETs towards a shelter. These characteristic features are observed across various taxa and, therefore, their expression may be mainly related to taxon-independent animal design features and to the environmental context in which prey live – for example whether the immediate surroundings of the prey provide potential refuges.


Proceedings of the Royal Society of London B: Biological Sciences | 2013

Marine mollusc predator-escape behaviour altered by near-future carbon dioxide levels

Sue-Ann Watson; Sjannie Lefevre; Mark I. McCormick; Paolo Domenici; Göran E. Nilsson; Philip L. Munday

Ocean acidification poses a range of threats to marine invertebrates; however, the potential effects of rising carbon dioxide (CO2) on marine invertebrate behaviour are largely unknown. Marine gastropod conch snails have a modified foot and operculum allowing them to leap backwards rapidly when faced with a predator, such as a venomous cone shell. Here, we show that projected near-future seawater CO2 levels (961 µatm) impair this escape behaviour during a predator–prey interaction. Elevated-CO2 halved the number of snails that jumped from the predator, increased their latency to jump and altered their escape trajectory. Physical ability to jump was not affected by elevated-CO2 indicating instead that decision-making was impaired. Antipredator behaviour was fully restored by treatment with gabazine, a GABA antagonist of some invertebrate nervous systems, indicating potential interference of neurotransmitter receptor function by elevated-CO2, as previously observed in marine fishes. Altered behaviour of marine invertebrates at projected future CO2 levels could have potentially far-reaching implications for marine ecosystems.


Physiological and Biochemical Zoology | 2005

Reflex cardioventilatory responses to hypoxia in the flathead gray mullet (Mugil cephalus) and their behavioral modulation by perceived threat of predation and water turbidity.

A. Shingles; David J. McKenzie; Guy Claireaux; Paolo Domenici

In hypoxia, gray mullet surface to ventilate well‐oxygenated water in contact with air, an adaptive response known as aquatic surface respiration (ASR). Reflex control of ASR and its behavioral modulation by perceived threat of aerial predation and turbid water were studied on mullet in a partly sheltered aquarium with free surface access. Injections of sodium cyanide (NaCN) into either the bloodstream (internal) or ventilatory water stream (external) revealed that ASR, hypoxic bradycardia, and branchial hyperventilation were stimulated by chemoreceptors sensitive to both systemic and water O2 levels. Sight of a model avian predator elicited bradycardia and hypoventilation, a fear response that inhibited reflex hyperventilation following external NaCN. The time lag to initiation of ASR following NaCN increased, but response intensity (number of events, time at the surface) was unchanged. Mullet, however, modified their behavior to surface under shelter or near the aquarium edges. Turbid water abolished the fear response and effects of the predator on gill ventilation and timing of ASR following external NaCN, presumably because of reduced visibility. However, in turbidity, mullet consistently performed ASR under shelter or near the aquarium edges. These adaptive modulations of ASR behavior would allow mullet to retain advantages of the chemoreflex when threatened by avian predators or when unable to perceive potential threats in turbidity.

Collaboration


Dive into the Paolo Domenici's collaboration.

Top Co-Authors

Avatar

Stefano Marras

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Cucco

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge