Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paolo Gallipoli is active.

Publication


Featured researches published by Paolo Gallipoli.


Cell Reports | 2016

A CRISPR Dropout Screen Identifies Genetic Vulnerabilities and Therapeutic Targets in Acute Myeloid Leukemia

Konstantinos Tzelepis; Hiroko Koike-Yusa; Etienne De Braekeleer; Yilong Li; Emmanouil Metzakopian; Oliver M. Dovey; Annalisa Mupo; Vera Grinkevich; Meng Li; Milena Mazan; Malgorzata Gozdecka; Shuhei Ohnishi; Jonathan L. Cooper; Miten Patel; Thomas McKerrell; Bin Chen; Ana Filipa Domingues; Paolo Gallipoli; Sarah A. Teichmann; Hannes Ponstingl; Ultan McDermott; Julio Saez-Rodriguez; Brian J. P. Huntly; Francesco Iorio; Cristina Pina; George S. Vassiliou; Kosuke Yusa

Summary Acute myeloid leukemia (AML) is an aggressive cancer with a poor prognosis, for which mainstream treatments have not changed for decades. To identify additional therapeutic targets in AML, we optimize a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screening platform and use it to identify genetic vulnerabilities in AML cells. We identify 492 AML-specific cell-essential genes, including several established therapeutic targets such as DOT1L, BCL2, and MEN1, and many other genes including clinically actionable candidates. We validate selected genes using genetic and pharmacological inhibition, and chose KAT2A as a candidate for downstream study. KAT2A inhibition demonstrated anti-AML activity by inducing myeloid differentiation and apoptosis, and suppressed the growth of primary human AMLs of diverse genotypes while sparing normal hemopoietic stem-progenitor cells. Our results propose that KAT2A inhibition should be investigated as a therapeutic strategy in AML and provide a large number of genetic vulnerabilities of this leukemia that can be pursued in downstream studies.


Blood | 2014

JAK2/STAT5 inhibition by nilotinib with ruxolitinib contributes to the elimination of CML CD34+ cells in vitro and in vivo

Paolo Gallipoli; Amy Cook; Susan Rhodes; Lisa Hopcroft; Helen Wheadon; Anthony D. Whetton; Heather G. Jørgensen; Ravi Bhatia; Tessa L. Holyoake

Chronic myeloid leukemia (CML) stem cell survival is not dependent on BCR-ABL protein kinase and treatment with ABL tyrosine kinase inhibitors cures only a minority of CML patients, thus highlighting the need for novel therapeutic targets. The Janus kinase (JAK)2/signal transducer and activator of transcription (STAT)5 pathway has recently been explored for providing putative survival signals to CML stem/progenitor cells (SPCs) with contradictory results. We investigated the role of this pathway using the JAK2 inhibitor, ruxolitinib (RUX). We demonstrated that the combination of RUX, at clinically achievable concentrations, with the specific and potent tyrosine kinase inhibitor nilotinib, reduced the activity of the JAK2/STAT5 pathway in vitro relative to either single agent alone. These effects correlated with increased apoptosis of CML SPCs in vitro and a reduction in primitive quiescent CML stem cells, including NOD.Cg-Prkdc(scid) IL2rg(tm1Wjl) /SzJ mice repopulating cells, induced by combination treatment. A degree of toxicity toward normal SPCs was observed with the combination treatment, although this related to mature B-cell engraftment in NOD.Cg-Prkdc(scid) IL2rg(tm1Wjl) /SzJ mice with minimal effects on primitive CD34(+) cells. These results support the JAK2/STAT5 pathway as a relevant therapeutic target in CML SPCs and endorse the current use of nilotinib in combination with RUX in clinical trials to eradicate persistent disease in CML patients.


Journal of the National Cancer Institute | 2013

Targeting Primitive Chronic Myeloid Leukemia Cells by Effective Inhibition of a New AHI-1–BCR-ABL–JAK2 Complex

Min Chen; Paolo Gallipoli; Donna DeGeer; Ivan Sloma; Donna L. Forrest; Matthew Chan; Damian Lai; Heather G. Jørgensen; Ashley Ringrose; Hui Mi Wang; Karen Lambie; Helen Nakamoto; Kyi Min Saw; Ali G. Turhan; Ralph B. Arlinghaus; James Paul; Jon Stobo; Michael J. Barnett; Allen C. Eaves; Connie J. Eaves; Tessa L. Holyoake; Xiaoyan Jiang

Background Imatinib mesylate (IM) induces clinical remission of chronic myeloid leukemia (CML). The Abelson helper integration site 1 (AHI-1) oncoprotein interacts with BCR-ABL and Janus kinase 2 (JAK2) to mediate IM response of primitive CML cells, but the effect of the interaction complex on the response to ABL and JAK2 inhibitors is unknown. Methods The AHI-1–BCR-ABL–JAK2 interaction complex was analyzed by mutational analysis and coimmunoprecipitation. Roles of the complex in regulation of response or resistance to ABL and JAK2 inhibitors were investigated in BCR-ABL + cells and primary CML stem/progenitor cells and in immunodeficient NSG mice. All statistical tests were two-sided. Results The WD40-repeat domain of AHI-1 interacts with BCR-ABL, whereas the N-terminal region interacts with JAK2; loss of these interactions statistically significantly increased the IM sensitivity of CML cells. Disrupting this complex with a combination of IM and an orally bioavailable selective JAK2 inhibitor (TG101209 [TG]) statistically significantly induced death of AHI-1–overexpressing and IM-resistant cells in vitro and enhanced survival of leukemic mice, compared with single agents (combination vs TG alone: 63 vs 53 days, ratio = 0.84, 95% confidence interval [CI] = 0.6 to 1.1, P = .004; vs IM: 57 days, ratio = 0.9, 95% CI = 0.61 to 1.2, P = .003). Combination treatment also statistically significantly enhanced apoptosis of CD34+ leukemic stem/progenitor cells and eliminated their long-term leukemia-initiating activity in NSG mice. Importantly, this approach was effective against treatment-naive CML stem cells from patients who subsequently proved to be resistant to IM therapy. Conclusions Simultaneously targeting BCR-ABL and JAK2 activities in CML stem/progenitor cells may improve outcomes in patients destined to develop IM resistance.


Blood | 2013

Autocrine TNF-α production supports CML stem and progenitor cell survival and enhances their proliferation

Paolo Gallipoli; Francesca Pellicano; Heather Morrison; Kamilla M.E. Laidlaw; Elaine K. Allan; Ravi Bhatia; Mhairi Copland; Heather G. Jørgensen; Tessa L. Holyoake

Chronic myeloid leukemia (CML) stem cells are not dependent on BCR-ABL kinase for their survival, suggesting that kinase-independent mechanisms must contribute to their persistence. We observed that CML stem/progenitor cells (SPCs) produce tumor necrosis factor-α (TNF-α) in a kinase-independent fashion and at higher levels relative to their normal counterparts. We therefore investigated the role of TNF-α and found that it supports survival of CML SPCs by promoting nuclear factor κB/p65 pathway activity and expression of the interleukin 3 and granulocyte/macrophage-colony stimulating factor common β-chain receptor. Furthermore, we demonstrate that in CML SPCs, inhibition of autocrine TNF-α signaling via a small-molecule TNF-α inhibitor induces apoptosis. Moreover TNF-α inhibition combined with nilotinib induces significantly more apoptosis relative to either treatment alone and a reduction in the absolute number of primitive quiescent CML stem cells. These results highlight a novel survival mechanism of CML SPCs and suggest a new putative therapeutic target for their eradication.


Cancer Discovery | 2016

Epigenetic Reprogramming Sensitizes CML Stem Cells to Combined EZH2 and Tyrosine Kinase Inhibition

Mary T. Scott; Koorosh Korfi; Peter Saffrey; Lisa Hopcroft; Ross Kinstrie; Francesca Pellicano; Carla Guenther; Paolo Gallipoli; Michelle Cruz; Karen Dunn; Heather G. Jørgensen; Jennifer Cassels; Ashley Hamilton; Andrew Crossan; Amy Sinclair; Tessa L. Holyoake; David Vetrie

A major obstacle to curing chronic myeloid leukemia (CML) is residual disease maintained by tyrosine kinase inhibitor (TKI)-persistent leukemic stem cells (LSC). These are BCR-ABL1 kinase independent, refractory to apoptosis, and serve as a reservoir to drive relapse or TKI resistance. We demonstrate that Polycomb Repressive Complex 2 is misregulated in chronic phase CML LSCs. This is associated with extensive reprogramming of H3K27me3 targets in LSCs, thus sensitizing them to apoptosis upon treatment with an EZH2-specific inhibitor (EZH2i). EZH2i does not impair normal hematopoietic stem cell survival. Strikingly, treatment of primary CML cells with either EZH2i or TKI alone caused significant upregulation of H3K27me3 targets, and combined treatment further potentiated these effects and resulted in significant loss of LSCs compared to TKI alone, in vitro, and in long-term bone marrow murine xenografts. Our findings point to a promising epigenetic-based therapeutic strategy to more effectively target LSCs in patients with CML receiving TKIs. SIGNIFICANCE In CML, TKI-persistent LSCs remain an obstacle to cure, and approaches to eradicate them remain a significant unmet clinical need. We demonstrate that EZH2 and H3K27me3 reprogramming is important for LSC survival, but renders LSCs sensitive to the combined effects of EZH2i and TKI. This represents a novel approach to more effectively target LSCs in patients receiving TKI treatment. Cancer Discov; 6(11); 1248-57. ©2016 AACR.See related article by Xie et al., p. 1237This article is highlighted in the In This Issue feature, p. 1197.


The Journal of Pathology | 2009

Targeted therapy in haematological malignancies.

Ashley Hamilton; Paolo Gallipoli; Emma Nicholson; Tessa L. Holyoake

The recent and rapid development of molecularly targeted therapy is best illustrated by advances in the management of haematological malignancy. In myeloid diseases we have seen dramatic improvements in the overall survival and quality of life for patients with chronic myeloid leukaemia treated with ABL and Src/ABL kinase inhibitors and we are poised to discover whether JAK2 inhibitors may offer similar benefit in myeloproliferative diseases. For acute myeloid leukaemia, the introduction of ATRA and myelotarg have had major impacts on the design of therapy regimens and many novel targeted agents, including farnesyl transferase, FLT3 and histone deacetylase inhibitors, are now in clinical trial. In lymphoid malignancies the highlight has been the introduction of rituximab, with significant improvements in the management of non‐Hodgkin lymphoma and chronic lymphocytic leukaemia. The last 10 years has experienced a rapidly expanding interest and acceptance that leukaemic stem cells, including an improved ability to target them, may hold the key to improved response and reduced relapse rates across both myeloid and lymphoid disease. We now eagerly anticipate an era in which a wealth of preclinical discoveries are progressed to the clinic. Copyright


Oncogene | 2016

The epigenetic regulators CBP and p300 facilitate leukemogenesis and represent therapeutic targets in acute myeloid leukemia

George Giotopoulos; W-I Chan; Sarah J. Horton; David Ruau; Paolo Gallipoli; A Fowler; Charles Crawley; E Papaemmanuil; Peter J. Campbell; Berthold Göttgens; Jm Van Deursen; Philip A. Cole; Brian J. P. Huntly

Growing evidence links abnormal epigenetic control to the development of hematological malignancies. Accordingly, inhibition of epigenetic regulators is emerging as a promising therapeutic strategy. The acetylation status of lysine residues in histone tails is one of a number of epigenetic post-translational modifications that alter DNA-templated processes, such as transcription, to facilitate malignant transformation. Although histone deacetylases are already being clinically targeted, the role of histone lysine acetyltransferases (KAT) in malignancy is less well characterized. We chose to study this question in the context of acute myeloid leukemia (AML), where, using in vitro and in vivo genetic ablation and knockdown experiments in murine models, we demonstrate a role for the epigenetic regulators CBP and p300 in the induction and maintenance of AML. Furthermore, using selective small molecule inhibitors of their lysine acetyltransferase activity, we validate CBP/p300 as therapeutic targets in vitro across a wide range of human AML subtypes. We proceed to show that growth retardation occurs through the induction of transcriptional changes that induce apoptosis and cell-cycle arrest in leukemia cells and finally demonstrate the efficacy of the KAT inhibitors in decreasing clonogenic growth of primary AML patient samples. Taken together, these data suggest that CBP/p300 are promising therapeutic targets across multiple subtypes in AML.


Clinical Lymphoma, Myeloma & Leukemia | 2014

Thrombosis and hemostatic abnormalities in hematological malignancies.

Riccardo Colombo; Paolo Gallipoli; Roberto Castelli

There is a paucity of data that pertain to thrombosis in patients with hematological malignancies. Recent studies showed that patients with lymphoma, multiple myeloma, and acute leukemia have an increased thrombotic risk, particularly at the time of diagnosis and during chemotherapy. We searched the PubMed database for articles on thromboembolic complications in patients with hematological malignancies published between 1996 and 2013. The incidence of thrombotic events is variable, and is influenced by the type and the stage of hematological malignancy, the antitumor therapy, and the use of central venous devices. The pathogenesis of thromboembolic disease in hematological malignancies is multifactorial. Tumor cell-derived procoagulant, fibrinolytic, or proteolytic factors, and inflammatory cytokines affect clotting activation, and chemotherapy and immunomodulatory drugs increase the thrombotic risk in patients with lymphoma, acute leukemia, and multiple myeloma. Infections might also contribute to the pathogenesis of the thromboembolic complications: endotoxins from gram-negative bacteria induce the release of tissue factor, tumor necrosis factor and interleukin-1b, and gram-positive organisms can release bacterial mucopolysaccharides that directly activate factor XII. In the setting of plasma cell dyscrasias, hyperviscosity, decreased fibrinolysis, procoagulant autoantibody production, inflammatory cytokines, acquired activated protein C resistance, and the prothrombotic effects of antimyeloma agents might be the cause of thromboembolic complications. Anticoagulant therapy is very complicated because of high risk of hemorrhage. Therefore, an accurate estimate of a patients thrombotic risk is essential to allow physicians to target thromboprophylaxis in high-risk patients.


Therapeutic advances in hematology | 2015

Epigenetic regulators as promising therapeutic targets in acute myeloid leukemia

Paolo Gallipoli; George Giotopoulos; Brian J. P. Huntly

Acute myeloid leukemia (AML), the most prevalent acute leukemia in adults, is an aggressive hematological malignancy arising in hematopoietic stem and progenitor cells. With the exception of a few specific AML subtypes, the mainstays of treatment have not significantly changed over the last 20 years, and are still based on standard cytotoxic chemotherapy. As a result, clinical outcome remains poor for the majority of patients, with overall long-term survival in the region of 20–30%. Recent successes in characterizing the genetic landscape of AML have highlighted that, despite its heterogeneity, many cases of AML carry recurrent mutations in genes encoding epigenetic regulators. Transcriptional dysregulation and altered epigenetic function have therefore emerged as exciting areas in AML research and it is becoming increasingly clear that epigenetic dysfunction is central to leukemogenesis in AML. This has subsequently paved the way for the development of epigenetically targeted therapies. In this review, we will discuss the most recent advances in our understanding of the role of epigenetic dysregulation in AML pathobiology. We will particularly focus on those altered epigenetic programs that have been shown to be central to the development and maintenance of AML in preclinical models. We will discuss the recent development of therapeutics specifically targeting these key epigenetic programs in AML, describe their mechanism of action and present their current clinical development. Finally, we will discuss the opportunities presented by epigenetically targeted therapy in AML and will highlight future challenges ahead for the AML community, to ensure that these novel therapeutics are optimally translated into clinical practice and result in clinical improvement for AML patients.


Hematology-oncology Clinics of North America | 2011

Hurdles Toward a Cure for CML: The CML Stem Cell

Paolo Gallipoli; Sheela A. Abraham; Tessa L. Holyoake

Chronic myeloid leukemia (CML) is the first cancer in which a genetic alteration was proven to be of pathogenic significance and is considered a disease model for oncogene addiction, targeted therapy, and cancer stem cells (CSCs). The introduction of tyrosine kinase inhibitors (TKIs) resulted in dramatic improvement in response and survival for patients with CML in chronic phase (CP); however, CSCs are spared by TKIs. In this article, we review the role of CSCs in CML in CP, their persistence following TKI treatment, and current approaches to target this population in an attempt to achieve disease cure.

Collaboration


Dive into the Paolo Gallipoli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge