Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paolo Mascagni is active.

Publication


Featured researches published by Paolo Mascagni.


Proceedings of the National Academy of Sciences of the United States of America | 2002

The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines

Flavio Leoni; Andrea Zaliani; Giorgio Bertolini; Giulia Porro; Paolo Pagani; Pietro Pozzi; Giancarlo Dona; Gianluca Fossati; Silvano Sozzani; Tania Azam; Philip Bufler; Giamila Fantuzzi; Igor Goncharov; Soo Hyun Kim; Benjamin J. Pomerantz; Leonid L. Reznikov; Britta Siegmund; Charles A. Dinarello; Paolo Mascagni

Suberoylanilide hydroxamic acid (SAHA) is a hydroxamic acid-containing hybrid polar molecule; SAHA specifically binds to and inhibits the activity of histone deacetylase. Although SAHA, like other inhibitors of histone deacetylase, exhibits antitumor effects by increasing expression of genes regulating tumor survival, we found that SAHA reduces the production of proinflammatory cytokines in vivo and in vitro. A single oral administration of SAHA to mice dose-dependently reduced circulating TNF-α, IL-1-β, IL-6, and IFN-γ induced by lipopolysaccharide (LPS). Administration of SAHA also reduced hepatic cellular injury in mice following i.v. injection of Con A. SAHA inhibited nitric oxide release in mouse macrophages stimulated by the combination of TNF-α plus IFN-γ. Human peripheral blood mononuclear cells stimulated with LPS in the presence of SAHA released less TNF-α, IL-1-β, IL-12, and IFN-γ (50% reduction at 100–200 nM). The production of IFN-γ stimulated by IL-18 plus IL-12 was also inhibited by SAHA (85% at 200 nM). However, SAHA did not affect LPS-induced synthesis of the IL-1-β precursor, the IL-1 receptor antagonist, or the chemokine IL-8. In addition, IFN-γ induced by anti-CD3 was not suppressed by SAHA. Steady-state mRNA levels for LPS-induced TNF-α and IFN-γ in peripheral blood mononuclear cells were markedly decreased, whereas IL-8 and IL-1-β mRNA levels were unaffected. Because SAHA exhibits antiinflammatory properties in vivo and in vitro, inhibitors of histone deacetylase may stimulate the expression of genes that control the synthesis of cytokines and nitric oxide or hyperacetylate other targets.


Journal of Clinical Investigation | 2008

Histone deacetylase inhibition modulates indoleamine 2,3-dioxygenase–dependent DC functions and regulates experimental graft-versus-host disease in mice

Pavan Reddy; Yaping Sun; Tomomi Toubai; Raimon Duran-Struuck; Shawn G. Clouthier; Elizabeth Weisiger; Yoshinobu Maeda; Isao Tawara; Oleg Krijanovski; Erin Gatza; Chen Liu; Chelsea Malter; Paolo Mascagni; Charles A. Dinarello; James L.M. Ferrara

Histone deacetylase (HDAC) inhibitors are antitumor agents that also have antiinflammatory properties. However, the mechanisms of their immunomodulatory functions are not known. We investigated the mechanisms of action of 2 HDAC inhibitors, suberoylanilide hydroxamic acid (SAHA) and ITF 2357, on mouse DC responses. Pretreatment of DCs with HDAC inhibitors significantly reduced TLR-induced secretion of proinflammatory cytokines, suppressed the expression of CD40 and CD80, and reduced the in vitro and in vivo allostimulatory responses induced by the DCs. In addition, injection of DCs treated ex vivo with HDAC inhibitors reduced experimental graft-versus-host disease (GVHD) in a murine allogeneic BM transplantation model. Exposure of DCs to HDAC inhibitors increased expression of indoleamine 2,3-dioxygenase (IDO), a suppressor of DC function. Blockade of IDO in WT DCs with siRNA and with DCs from IDO-deficient animals caused substantial reversal of HDAC inhibition-induced in vitro suppression of DC-stimulated responses. Direct injection of HDAC inhibitors early after allogeneic BM transplantation to chimeric animals whose BM-derived cells lacked IDO failed to protect from GVHD, demonstrating an in vivo functional role for IDO. Together, these data show that HDAC inhibitors regulate multiple DC functions through the induction of IDO and suggest that they may represent a novel class of agents to treat immune-mediated diseases.


Journal of Immunology | 2006

Histone Hyperacetylation Is Associated with Amelioration of Experimental Colitis in Mice

Rainer Glauben; Arvind Batra; Inka Fedke; Martin Zeitz; Hans A. Lehr; Flavio Leoni; Paolo Mascagni; Giamila Fantuzzi; Charles A. Dinarello; Britta Siegmund

Inhibitors of histone deacetylases (HDAC) are being studied for their antiproliferative effects in preclinical cancer trials. Recent studies suggest an anti-inflammatory role for this class of compounds. Because inflammatory bowel disease is associated with an increased risk of malignancies, agents with antiproliferative and anti-inflammatory properties would be of therapeutic interest. HDAC inhibitors from various classes were selected and evaluated for their in vitro capacity to suppress cytokine production and to induce apoptosis and histone acetylation. Valproic acid (VPA) and suberyolanilide hydroxamic acid (SAHA) were chosen for further studies in dextran sulfate sodium- and trinitrobenzene sulfonic acid-induced colitis in mice. In vitro, inhibition of HDAC resulted in a dose-dependent suppression of cytokine synthesis and apoptosis induction requiring higher concentrations of HDAC inhibitors for apoptosis induction compared with cytokine inhibition. Oral administration of either VPA or SAHA reduced disease severity in dextran sulfate sodium-induced colitis. The macroscopic and histologic reduction of disease severity was associated with a marked suppression of colonic proinflammatory cytokines. In parallel to the beneficial effect observed, a dose-dependent increase in histone 3 acetylation at the site of inflammation was shown under VPA treatment. Furthermore, SAHA as well as VPA treatment resulted in amelioration of trinitrobenzene sulfonic acid-induced colitis, which was associated with an increase of apoptosis of lamina propria lymphocytes. Inhibitors of HDAC reveal strong protective effects in different models of experimental colitis by inducing apoptosis and suppressing proinflammatory cytokines, thereby representing a promising class of compounds for clinical studies in human inflammatory bowel disease.


Molecular Pharmacology | 2006

Pharmacological Inhibition of Histone Deacetylases by Suberoylanilide Hydroxamic Acid Specifically Alters Gene Expression and Reduces Ischemic Injury in the Mouse Brain

Giuseppe Faraco; Tristano Pancani; Laura Formentini; Paolo Mascagni; Gianluca Fossati; Flavio Leoni; Flavio Moroni; Alberto Chiarugi

Pharmacological manipulation of gene expression is considered a promising avenue to reduce postischemic brain damage. Histone deacetylases (HDACs) play a central role in epigenetic regulation of transcription, and inhibitors of HDACs are emerging as neuroprotective agents. In this study, we investigated the effect of the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) on histone acetylation in control and ischemic mouse brain. We report that brain histone H3 acetylation was constitutively present at specific lysine residues in neurons and astrocytes. It is noteworthy that in the ischemic brain tissue subjected to6hof middle cerebral artery occlusion, histone H3 acetylation levels drastically decreased, without evidence for a concomitant change of histone acetyl-transferase or deacetylase activities. Treatment with SAHA (50 mg/kg i.p.) increased histone H3 acetylation within the normal brain (of approximately 8-fold after 6 h) and prevented histone deacetylation in the ischemic brain. These effects were accompanied by increased expression of the neuroprotective proteins Hsp70 and Bcl-2 in both control and ischemic brain tissue 24 h after the insult. It is noteworthy that at the same time point, mice injected with SAHA at 25 and 50 mg/kg had smaller infarct volumes compared with vehicle-receiving animals (28.5% and 29.8% reduction, p < 0.05 versus vehicle, Students t test). At higher doses, SAHA was less efficient in increasing Bcl-2 and Hsp70 expression and did not afford significant ischemic neuroprotection (13.9% infarct reduction). Data demonstrate that pharmacological inhibition of HDACs promotes expression of neuroprotective proteins within the ischemic brain and underscores the therapeutic potential of molecules inhibiting HDACs for stroke therapy.


Molecular Medicine | 2011

Histone Deacetylase Inhibitors for Treating a Spectrum of Diseases Not Related to Cancer

Charles A. Dinarello; Gianluca Fossati; Paolo Mascagni

This issue of Molecular Medicine contains 14 original research reports and state-of-the-art reviews on histone deacetylase inhibitors (HDACi’s), which are being studied in models of a broad range of diseases not related to the proapoptotic properties used to treat cancer. The spectrum of these diseases responsive to HDACi’s is for the most part due to several antiinflammatory properties, often observed in vitro but importantly also in animal models. One unifying property is a reduction in cytokine production as well as inhibition of cytokine postreceptor signaling. Distinct from their use in cancer, the reduction in inflammation by HDACi’s is consistently observed at low concentrations compared with the higher concentrations required for killing tumor cells. This characteristic makes HDACi’s attractive candidates for treating chronic diseases, since low doses are well tolerated. For example, low oral doses of the HDACi givinostat have been used in children to reduce arthritis and are well tolerated. In addition to the antiinflammatory properties, HDACi’s have shown promise in models of neurodegenerative disorders, and HDACi’s also hold promise to drive HIV-1 out of latently infected cells. No one molecular mechanism accounts for the non-cancer-related properties of HDACi’s, since there are 18 genes coding for histone deacetylases. Rather, there are mechanisms unique for the pathological process of specific cell types. In this overview, we summarize the preclinical data on HDACi’s for therapy in a wide spectrum of diseases unrelated to the treatment of cancer. The data suggest the use of HDACi’s in treating autoimmune as well as chronic inflammatory diseases.


Infection and Immunity | 2001

Mycobacterium tuberculosis chaperonin 60.1 is a more potent cytokine stimulator than chaperonin 60.2 (Hsp 65) and contains a CD14-binding domain.

Jo Lewthwaite; Anthony R. M. Coates; Peter Tormay; Mahavir Singh; Paolo Mascagni; Stephen Poole; Michael M. Roberts; Lindsay Sharp; Brian Henderson

ABSTRACT Much attention has focused on the Mycobacterium tuberculosis molecular chaperone chaperonin (Cpn) 60.2 (Hsp 65) in the pathology of tuberculosis because of its immunogenicity and ability to directly activate human monocytes and vascular endothelial cells. However, M. tuberculosis is one of a small group of bacteria that contain multiple genes encoding Cpn 60 proteins. We have now cloned and expressed both M.tuberculosis proteins and report that the novel chaperonin 60, Cpn 60.1, is a more potent inducer of cytokine synthesis than is Cpn 60.2. This is in spite of 76% amino acid sequence similarity between the two mycobacterial chaperonins. TheM. tuberculosis Cpn 60.2 protein activates human peripheral blood mononuclear cells by a CD14-independent mechanism, whereas Cpn 60.1 is partially CD14 dependent and contains a peptide sequence whose actions are blocked by anti-CD14 monoclonal antibodies. The cytokine-inducing activity of both chaperonins is extremely resistant to heat. Cpn 60.1 may be an important virulence factor in tuberculosis, able to activate cells by diverse receptor-driven mechanisms.


Journal of Immunology | 2009

Cutting Edge: Negative Regulation of Dendritic Cells through Acetylation of the Nonhistone Protein STAT-3

Yaping Sun; Y. Eugene Chin; Elizabeth Weisiger; Chelsea Malter; Isao Tawara; Tomomi Toubai; Erin Gatza; Paolo Mascagni; Charles A. Dinarello; Pavan Reddy

Histone deacetylase (HDAC) inhibition modulates dendritic cell (DC) functions and regulates experimental graft-vs-host disease and other immune-mediated diseases. The mechanisms by which HDAC inhibition modulates immune responses remain largely unknown. STAT-3 is a transcription factor shown to negatively regulate DC functions. In this study we report that HDAC inhibition acetylates and activates STAT-3, which regulates DCs by promoting the transcription of IDO. These findings demonstrate a novel functional role for posttranslational modification of STAT-3 through acetylation and provide mechanistic insights into HDAC inhibition-mediated immunoregulation by induction of IDO.


Journal of Computer-aided Molecular Design | 1997

MS-WHIM, new 3D theoretical descriptors derived from molecular surface properties: A comparative 3D QSAR study in a series of steroids

Gianpaolo Bravi; Emanuela Gancia; Paolo Mascagni; Monica Pegna; Roberto Todeschini; Andrea Zaliani

The recently proposed WHIM (Weighted Holistic Invariant Molecular) approach [Todeschini,R., Lasagni, M. and Marengo, E., J. Chemometrics, 8 (1994) 263] has been applied tomolecular surfaces to derive new 3D theoretical descriptors, called MS-WHIM. To test theirreliability, a 3D QSAR study has been performed on a series of steroids, comparing the MS-WHIM description to both the original WHIM indices and CoMFA fields. The analysis of thestatistical models obtained shows that MS-WHIM descriptors provide meaningful quantitativestructure–activity correlations. Thus, the results obtained agree well with thoseachieved using CoMFA fields. The concise number of indices, the ease of their calculationand their invariance to the coordinate system make MS-WHIM an attractive tool for 3DQSAR studies.


Neurobiology of Disease | 2009

Histone deacetylase (HDAC) inhibitors reduce the glial inflammatory response in vitro and in vivo.

Giuseppe Faraco; Maria Pittelli; Leonardo Cavone; Silvia Fossati; Marco Porcu; Paolo Mascagni; Gianluca Fossati; Flavio Moroni; Alberto Chiarugi

Histone deacetylase inhibitors (HDACi) are emerging tools for epigenetic modulation of gene expression and suppress the inflammatory response in models of systemic immune activation. Yet, their effects within the brain are still controversial. Also, whether HDACs are expressed in astrocytes or microglia is unclear. Here, we report the identification of transcripts for HDAC 1-11 in cultured mouse glial cells. Two HDACi such as SAHA and ITF2357 induce dramatic increase of histone acetylation without causing cytotoxicity of cultured cells. Of note, the two compounds inhibit expression of pro-inflammatory mediators by LPS-challenged glial cultures, and potentiate immunosuppression triggered by dexamethasone in vitro. The anti-inflammatory effect is not due to HDACi-induced transcription of immunosuppressant proteins, (including SOCS-1/3) or microRNA-146. Rather, it is accompanied by direct alteration of transcription factor DNA binding and ensuing transcriptional activation. Indeed, both HDACi impair NFkappaB-dependent IkappaBalpha resynthesis in glial cells exposed to LPS, and, among various AP1 subunits and NFkappaB p65, affect the DNA binding activity of c-FOS, c-JUN and FRA2. Importantly, ITF2357 reduces the expression of pro-inflammatory mediators in the striatum of mice iontophoretically injected with LPS. Data demonstrate that mouse glial cells have ongoing HDAC activity, and its inhibition suppresses the neuroinflammatory response because of a direct impairment of the transcriptional machinery.


Diabetologia | 2007

Inhibition of histone deacetylases prevents cytokine-induced toxicity in beta cells

Lesli H. Larsen; M. Tonnesen; Sif G. Rønn; Joachim Størling; Sine W. Jørgensen; Paolo Mascagni; Charles A. Dinarello; Nils Billestrup; Thomas Mandrup-Poulsen

Aims/hypothesisThe immune-mediated elimination of pancreatic beta cells in type 1 diabetes involves release of cytotoxic cytokines such as IL-1β and IFNγ, which induce beta cell death in vitro by mechanisms that are both dependent and independent of nitric oxide (NO). Nuclear factor kappa B (NFκB) is a critical signalling molecule in inflammation and is required for expression of the gene encoding inducible NO synthase (iNOS) and of pro-apoptotic genes. NFκB has recently been shown to associate with chromatin-modifying enzymes histone acetyltransferases and histone deacetylases (HDAC), and positive effects of HDAC inhibition have been obtained in several inflammatory diseases. Thus, the aim of this study was to investigate whether HDAC inhibition protects beta cells against cytokine-induced toxicity.Materials and methodsThe beta cell line, INS-1, or intact rat islets were precultured with HDAC inhibitors suberoylanilide hydroxamic acid or trichostatin A in the absence or presence of IL-1β and IFNγ. Effects on insulin secretion and NO formation were measured by ELISA and Griess reagent, respectively. iNOS levels and NFκB activity were measured by immunoblotting and by immunoblotting combined with electrophoretic mobility shift assay, respectively. Viability was analysed by 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyl-tetrazolium bromide and apoptosis by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) assay and histone-DNA complex ELISA.ResultsHDAC inhibition reduced cytokine-mediated decrease in insulin secretion and increase in iNOS levels, NO formation and apoptosis. IL-1β induced a bi-phasic phosphorylation of inhibitor protein kappa Bα (IκBα) with the 2nd peak being sensitive to HDAC inhibition. No effect was seen on IκBα degradation and NFκB DNA binding.Conclusions/interpretationHDAC inhibition prevents cytokine-induced beta cell apoptosis and impaired beta cell function associated with a downregulation of NFκB transactivating activity.

Collaboration


Dive into the Paolo Mascagni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles A. Dinarello

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haydn L. Ball

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge