Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paolo Monciardini.
Natural Product Reports | 2007
Stefano Donadio; Paolo Monciardini; Margherita Sosio
A total of 223 complete bacterial genomes are analyzed, with 281 citations, for the presence of genes encoding modular polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS). We report on the distribution of these systems in different bacterial taxa and, whenever known, the metabolites they synthesize. We also highlight, in the different bacterial lineages, the PKS and NRPS genes and, whenever known, the corresponding products.
The Journal of Antibiotics | 2010
Stefano Donadio; Sonia Maffioli; Paolo Monciardini; Margherita Sosio; Daniela Jabes
New antibiotics are necessary to treat microbial pathogens that are becoming increasingly resistant to available treatment. Despite the medical need, the number of newly approved drugs continues to decline. We offer an overview of the pipeline for new antibiotics at different stages, from compounds in clinical development to newly discovered chemical classes. Consistent with historical data, the majority of antibiotics under clinical development are natural products or derivatives thereof. However, many of them also represent improved variants of marketed compounds, with the consequent risk of being only partially effective against the prevailing resistance mechanisms. In the discovery arena, instead, compounds with promising activities have been obtained from microbial sources and from chemical modification of antibiotic classes other than those in clinical use. Furthermore, new natural product scaffolds have also been discovered by ingenious screening programs. After providing selected examples, we offer our view on the future of antibiotic discovery.
Journal of Biotechnology | 2002
Stefano Donadio; Paolo Monciardini; Rosa Alduina; Paola Mazza; Claudia Chiocchini; Linda Cavaletti; Margherita Sosio; Anna Maria Puglia
Soil microbes represent an important source of biologically active compounds. These molecules present original and unexpected structure and are selective inhibitors of their molecular targets. At Biosearch Italia, discovery of new bioactive molecules is mostly carried out through the exploitation of a proprietary strain collection of over 50000 strains, mostly unusual genera of actinomycetes and uncommon filamentous fungi. A critical element in a drug discovery based on microbial extracts is the isolation of unexploited groups of microorganisms that are at the same time good producers of secondary metabolites. Molecular genetics can assist in these efforts. We will review the development and application of molecular methods for the detection of uncommon genera of actinomycetes in soil DNA and for the rapid dereplication of actinomycete isolates. The results indicate a substantial presence in many soils of the uncommon genera and a large diversity of isolated actinomycetes. However, while uncommon actinomycete strains may provide an increased chance of yielding novel structures, their genetics and physiology are poorly understood. To speed up their manipulation, we have developed vectors capable of stably maintaining large segments of actinomycete DNA in Escherichia coli and of integrating site specifically in the Streptomyces genome. These vectors are suitable for the reconstruction of gene clusters from smaller segment of cloned DNA, the preparation of large-insert libraries from unusual actinomycete strains and the construction of environmental libraries.
FEMS Microbiology Ecology | 2002
Paolo Monciardini; Margherita Sosio; Linda Cavaletti; Claudia Chiocchini; Stefano Donadio
Actinomycetes play a relevant role in soil ecology and are also of important biotechnological interest as they produce several bioactive metabolites. Within the filamentous actinomycetes, it would be desirable to recognize and characterize environmental samples containing unusual genera. To this end, we have developed selective primer sets for polymerase chain reaction (PCR) amplification of 16S rDNA from the Actinomycetales families Micromonosporaceae, Streptomycetaceae, Streptosporangiaceae and Thermomonosporaceae, and from the genus Dactylosporangium. Each primer set, evaluated on genomic DNA from reference strains, showed high specificity and good sensitivity. After amplification of DNA extracted from soil samples, the sequence of the cloned PCR products confirmed the specific amplification of the desired group of sequences in at least 95% of the clones for each primer set. The application of these primers to environmental samples showed the frequent occurrence of these groups in soil samples and also revealed sequences that can be attributed to new groups of actinomycetes.
Applied and Environmental Microbiology | 2006
Linda Cavaletti; Paolo Monciardini; Ruggiero Bamonte; Peter Schumann; Manfred Rohde; Margherita Sosio; Stefano Donadio
ABSTRACT A novel bacterial strain that was isolated from an Italian soil and was designated SOSP1-21T forms branched mycelia in solid and liquid media and has a filamentous morphology similar to that of some genera belonging to the Actinobacteria. Electron microscopy showed that this organism has a grape-like appearance, resulting from interlacing of spores originating from sporophoric hyphae. Ten strains that are morphologically related to SOSP1-21T were recovered from soil. Phylogenetic analyses of 16S rRNA gene segments confirmed the relatedness of these strains to SOSP1-21T and indicated that the newly isolated strains form separate clades in a deeply branching lineage. The closest matches for the 16S rRNA sequences of all the strains (around 79% identity) were matches with representatives of the Chloroflexi, although the affiliation with this division was not supported by high bootstrap values. The strains are mesophilic aerobic heterotrophs and are also capable of growing under microaerophilic conditions. They all stain gram positive. Strain SOSP1-21T contains ornithine, alanine, glutamic acid, serine, and glycine as the peptidoglycan amino acids. In addition, an unusual level of C16:1 2OH (30%) was found in the cellular fatty acids. The G+C content of SOSP1-21T genomic DNA is 53.9%, and MK-9(H2) was the only menaquinone detected. All these data suggest that SOSP1-21T and the related strains may constitute a new division of filamentous, spore-forming, gram-positive bacteria. We propose the name Ktedobacter racemifer gen. nov., sp. nov. for strain SOSP1-21T.
Microbial Biotechnology | 2014
Paolo Monciardini; Marianna Iorio; Sonia Maffioli; Margherita Sosio; Stefano Donadio
There is an increased need for new drug leads to treat diseases in humans, animals and plants. A dramatic example is represented by the need for novel and more effective antibiotics to combat multidrug‐resistant microbial pathogens. Natural products represent a major source of approved drugs and still play an important role in supplying chemical diversity, despite a decreased interest by large pharmaceutical companies. Novel approaches must be implemented to decrease the chances of rediscovering the tens of thousands of known natural products. In this review, we present an overview of natural product screening, focusing particularly on microbial products. Different approaches can be implemented to increase the probability of finding new bioactive molecules. We thus present the rationale and selected examples of the use of hypersensitive assays; of accessing unexplored microorganisms, including the metagenome; and of genome mining. We then focus our attention on the technology platform that we are currently using, consisting of approximately 70 000 microbial strains, mostly actinomycetes and filamentous fungi, and discuss about high‐quality screening in the search for bioactive molecules. Finally, two case studies are discussed, including the spark that arose interest in the compound: in the case of orthoformimycin, the novel mechanism of action predicted a novel structural class; in the case of NAI‐112, structural similarity pointed out to a possible in vivo activity. Both predictions were then experimentally confirmed.
The Journal of Antibiotics | 2011
Roberta Pozzi; Matteo Simone; Carlo Mazzetti; Sonia Maffioli; Paolo Monciardini; Linda Cavaletti; Ruggiero Bamonte; Margherita Sosio; Stefano Donadio
In the search for novel antibiotics, natural products continue to represent a valid source of bioactive molecules. During a program aimed at identifying previously unreported taxa of actinomycetes as potential source of novel compounds, we isolated hundreds of different representatives of a new group, initially designated as ‘Alpha’ and independently described as Actinoallomurus. We report on a PCR-specific method for the detection of this taxon, on appropriate growth conditions and on a pilot-screening program on 78 strains. The strains produce antibacterial or antifungal compounds at a relatively high frequency. Four strains were characterized in further detail: one produced the aromatic polyketide benanomicin B and its dexylosyl derivative; a second strain produced N-butylbenzenesulfonamide; a third strain was an efficient converter of soymeal isoflavonoids from soymeal constituents; and a fourth strain produced several coumermycin-related aminocoumarins, with coumermycin A2 as the major peak, and with some new congeners as minor components of the complex. These data suggest that Actinoallomurus strains possess several pathways for secondary metabolism and represent an attractive source in the search for novel antibiotics.
Applied Microbiology and Biotechnology | 2010
Stefano Donadio; Sonia Maffioli; Paolo Monciardini; Margherita Sosio; Daniela Jabes
Microbial pathogens are becoming increasingly resistant to available treatments, and new antibiotics are badly needed, but the pipeline of compounds under development is scarce. Furthermore, the majority of antibiotics under development are improved derivatives of marketed compounds, which are at best only partially effective against prevailing resistance mechanisms. In contrast, antibiotics endowed with new mechanisms of action are expected to be highly effective against multi-drug resistant pathogens. In this review, examples are provided of new antibiotics classes in late discovery or clinical development, arising from three different avenues: (1) compounds discovered and never brought to market by large pharmaceutical companies; (2) old compounds reanalyzed and rejuvinated with today’s tools; and (3) newly discovered molecules. For each compound, we will briefly describe original discovery, mechanism of action, any known resistance, antimicrobial profile, and current status of development.
Journal of Natural Products | 2014
Sonia Maffioli; Marianna Iorio; Margherita Sosio; Paolo Monciardini; Eleonora Gaspari; Stefano Donadio
NAI-107, a lantibiotic produced by Microbispora sp. 107891, shows potent activity against multi-drug-resistant bacterial pathogens. It is produced as a complex of related molecules, which is unusual for ribosomally synthesized peptides. Here we describe the identification, characterization, and antibacterial activity of the congeners produced by Microbispora sp. 107891 and by the related Microbispora corallina NRRL 30420. These molecules differ by the presence of two, one, or zero hydroxyl groups at Pro-14, by the presence of a chlorine at Trp-4, and/or by the presence of a sulfoxide on the thioether of the first lanthionine.
ACS Chemical Biology | 2014
Marianna Iorio; Oscar Sasso; Sonia I. Maffioli; Rosalia Bertorelli; Paolo Monciardini; Margherita Sosio; Fabiola Bonezzi; Maria Summa; Cristina Brunati; Roberta Bordoni; Giorgio Corti; Glauco Tarozzo; Daniele Piomelli; Angelo Reggiani; Stefano Donadio
Among the growing family of ribosomally synthesized, post-translationally modified peptides, particularly intriguing are class III lanthipeptides containing the triamino acid labionin. In the course of a screening program aimed at finding bacterial cell wall inhibitors, we discovered a new lanthipeptide produced by an Actinoplanes sp. The molecule, designated NAI-112, consists of 22 amino acids and contains an N-terminal labionin and a C-terminal methyl-labionin. Unique among lanthipeptides, it carries a 6-deoxyhexose moiety N-linked to a tryptophan residue. Consistently, the corresponding gene cluster encodes, in addition to the LanKC enzyme characteristic of this lanthipeptide class, a glycosyl transferase. Despite possessing weak antibacterial activity, NAI-112 is effective in experimental models of nociceptive pain, reducing pain symptoms in mice in both the formalin and the chronic constriction injury tests. Thus, NAI-112 represents, after the labyrinthopeptins, the second example of a lanthipeptide effective against nociceptive pain.