Paolo Moras
AREA Science Park
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paolo Moras.
Applied Physics Letters | 2010
Paola De Padova; C. Quaresima; C. Ottaviani; P. M. Sheverdyaeva; Paolo Moras; C. Carbone; D. Topwal; Bruno Olivieri; Abdelkader Kara; Hamid Oughaddou; B. Aufray; Guy Le Lay
We report on the electronic properties of straight, 1.6 nm wide, silicene nanoribbons on Ag(110), arranged in a one-dimensional grating with a pitch of 2 nm, whose high-resolution scanning tunneling microscopy images reveal a honeycomb geometry. Angle-resolved photoemission shows quantum confined electronic states of one-dimensional character. The silicon band dispersion along the direction of the nanoribbons suggests a behavior analogous to the Dirac cones of graphene on different substrates.
Journal of Physics: Condensed Matter | 2014
Paolo Moras; Tevfik Onur Menteş; P. M. Sheverdyaeva; Andrea Locatelli; C. Carbone
Silicene, the silicon equivalent of graphene, is attracting increasing scientific and technological attention in view of the exploitation of its exotic electronic properties. This novel material has been theoretically predicted to exist as a free-standing layer in a low-buckled, stable form, and can be synthesized by the deposition of Si on appropriate crystalline substrates. By employing low-energy electron diffraction and microscopy, we have studied the growth of Si on Ag(1 1 1) and observed a rich variety of rotationally non-equivalent silicene structures. Our results highlight a very complex formation diagram, reflecting the coexistence of different and nearly degenerate silicene phases, whose relative abundance can be controlled by varying the Si coverage and growth temperature. At variance with other studies, we find that the formation of single-phase silicene monolayers cannot be achieved on Ag(1 1 1).
ACS Nano | 2012
M. Papagno; Stefano Rusponi; P. M. Sheverdyaeva; S. Vlaic; Markus Etzkorn; Daniela Pacilé; Paolo Moras; C. Carbone; Harald Brune
We investigate the effects of Na adsorption on the electronic structure of bare and Ir cluster superlattice-covered epitaxial graphene on Ir(111) using angle-resolved photoemission spectroscopy and scanning tunneling microscopy. At Na saturation coverage, a massive charge migration from sodium atoms to graphene raises the graphene Fermi level by ~1.4 eV relative to its neutrality point. We find that Na is adsorbed on top of the graphene layer, and when coadsorbed onto an Ir cluster superlattice, it results in the opening of a large band gap of Δ(Na/Ir/G) = 740 meV, comparable to the one of Ge and with preserved high group velocity of the charge carriers.
Journal of the American Chemical Society | 2014
Sebastian Stepanow; Alberto Lodi Rizzini; Cornelius Krull; Jerald Kavich; J. C. Cezar; Flora Yakhou-Harris; P. M. Sheverdyaeva; Paolo Moras; C. Carbone; Gustavo Ceballos; Aitor Mugarza; Pietro Gambardella
The spin state of organic-based magnets at interfaces is to a great extent determined by the organic environment and the nature of the spin-carrying metal center, which is further subject to modifications by the adsorbate-substrate coupling. Direct chemical doping offers an additional route for tailoring the electronic and magnetic characteristics of molecular magnets. Here we present a systematic investigation of the effects of alkali metal doping on the charge state and crystal field of 3d metal ions in Cu, Ni, Fe, and Mn phthalocyanine (Pc) monolayers adsorbed on Ag. Combined X-ray absorption spectroscopy and ligand field multiplet calculations show that Cu(II), Ni(II), and Fe(II) ions reduce to Cu(I), Ni(I), and Fe(I) upon alkali metal adsorption, whereas Mn maintains its formal oxidation state. The strength of the crystal field at the Ni, Fe, and Mn sites is strongly reduced upon doping. The combined effect of these changes is that the magnetic moment of high- and low-spin ions such as Cu and Ni can be entirely turned off or on, respectively, whereas the magnetic configuration of MnPc can be changed from intermediate (3/2) to high (5/2) spin. In the case of FePc a 10-fold increase of the orbital magnetic moment accompanies charge transfer and a transition to a high-spin state.
Physical Review B | 2013
Daniela Pacilé; Philipp Leicht; M. Papagno; P. M. Sheverdyaeva; Paolo Moras; C. Carbone; Konstantin Krausert; Lukas Zielke; Mikhail Fonin; Yuriy S. Dedkov; Florian Mittendorfer; Jörg Doppler; Andreas Garhofer; Josef Redinger
We report the structural and electronic properties of an artificial graphene/Ni(111) system obtained by the intercalation of a monoatomic layer of Ni in graphene/Ir(111). Upon intercalation, Ni grows epitaxially on Ir(111), resulting in a lattice mismatched graphene/Ni system. By performing Scanning Tunneling Microscopy (STM) measurements and Density Functional Theory (DFT) calculations, we show that the intercalated Ni layer leads to a pronounced buckling of the graphene film. At the same time an enhanced interaction is measured by Angle-Resolved Photo-Emission Spectroscopy (ARPES), showing a clear transition from a nearly-undisturbed to a strongly-hybridized graphene -band. A comparison of the intercalation-like graphene system with flat graphene on bulk Ni(111), and mildly corrugated graphene on Ir(111), allows to disentangle the two key properties which lead to the observed increased interaction, namely lattice matching and electronic interaction. Although the latter determines the strength of the hybridization, we find an important influence of the local carbon configuration resulting from the lattice mismatch.
Physical Review B | 2016
Baojie Feng; Yang-Hao Chan; Ya Feng; Ro-Ya Liu; M. Y. Chou; Kenta Kuroda; Koichiro Yaji; Ayumi Harasawa; Paolo Moras; Alexei Barinov; W. Malaeb; Cedric Bareille; Takeshi Kondo; Shik Shin; Fumio Komori; T.-C. Chiang; Youguo Shi; Iwao Matsuda
We determine the band structure and spin texture of
Nature Communications | 2017
Baojie Feng; Botao Fu; Shusuke Kasamatsu; Suguru Ito; Peng Cheng; Cheng-Cheng Liu; Ya Feng; S. F. Wu; Sanjoy K. Mahatha; P. M. Sheverdyaeva; Paolo Moras; M. Arita; Osamu Sugino; T.-C. Chiang; Kenya Shimada; Koji Miyamoto; Taichi Okuda; Kehui Wu; Lan Chen; Yugui Yao; Iwao Matsuda
{\mathrm{WTe}}_{2}
Dalton Transactions | 2007
Corrado Crotti; Erica Farnetti; Serena Filipuzzi; Mauro Stener; Ennio Zangrando; Paolo Moras
by spin- and angle-resolved photoemission spectroscopy (SARPES). With the support of first-principles calculations, we reveal the existence of spin polarization of both the Fermi arc surface states and bulk Fermi pockets. Our results support
Physical Review B | 2013
M. Papagno; Paolo Moras; P. M. Sheverdyaeva; J. Doppler; Andreas Garhofer; Florian Mittendorfer; Josef Redinger; C. Carbone
{\mathrm{WTe}}_{2}
ACS Nano | 2017
P. M. Sheverdyaeva; Sanjoy K. Mahatha; Paolo Moras; L. Petaccia; Guido Fratesi; Giovanni Onida; C. Carbone
to be a type-II Weyl semimetal candidate and provide important information to understand its extremely large and nonsaturating magnetoresistance.