Paolo Palmieri
Delft University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paolo Palmieri.
Journal of Theoretical and Applied Electronic Commerce Research | 2012
Luca Calderoni; Dario Maio; Paolo Palmieri
A smart city is a high-performance urban context, where citizens are more aware of, and more integrated into the city life, thanks to an intelligent city information system. In this paper we design, implement and deploy a smart application that retrieves and conveys to the user relevant information on the users surroundings. This case study application let us discuss the challenges involved in creating a location-aware mobile service based on live information coming from the city IT infrastructure. The service, that is currently being deployed in the Italian city of Cesena, has been designed with the goal of being a general model for future applications. In particular, we discuss location-aware and mobile development, cloud and cluster based geographical data storage, and spatial data computation. For each of these topics we provide implementation and deployment solutions based on currently available technology. In particular we propose an architecture based on a complex On-Line Transaction Processing (OLTP) infrastructure. Furthermore, this paper represents the first comprehensive, scientific study on the subject.
Computer Communications | 2015
Luca Calderoni; Paolo Palmieri; Dario Maio
We define a new data structure for location privacy based on bloom filters.We provide two privacy preserving protocols for location-aware services.We prove the security of the protocols and we analyze their efficiency.We provide a thorough evaluation of the data structure and we simulate the protocols. Location-aware applications are one of the biggest innovations brought by the smartphone era, and are effectively changing our everyday lives. But we are only starting to grasp the privacy risks associated with constant tracking of our whereabouts. In order to continue using location-based services in the future without compromising our privacy and security, we need new, privacy-friendly applications and protocols. In this paper, we propose a new compact data structure based on Bloom filters, designed to store location information. The spatial Bloom filter (SBF), as we call it, is designed with privacy in mind, and we prove it by presenting two private positioning protocols based on the new primitive. The protocols keep the users exact position private, but allow the provider of the service to learn when the user is close to specific points of interest, or inside predefined areas. At the same time, the points and areas of interest remain oblivious to the user. The two proposed protocols are aimed at different scenarios: a two-party setting, in which communication happens directly between the user and the service provider, and a three-party setting, in which the service provider outsources to a third party the communication with the user. A detailed evaluation of the efficiency and security of our solution shows that privacy can be achieved with minimal computational and communication overhead. The potential of spatial Bloom filters in terms of generality, security and compactness makes them ready for deployment, and may open the way for privacy preserving location-aware applications.
international workshop on security | 2014
Paolo Palmieri; Johan A. Pouwelse
Onion routing is a technique for anonymous and privacy preserving communication at the base of popular Internet anonymity tools such as Tor. In onion routing, traffic is relayed by a number of intermediary nodes (called relays) before it reaches the intended destination. To guarantee privacy and prevent tampering, each packet is encrypted multiple times in a layered manner, using the public keys of the relays. Therefore, this mechanism makes two important assumptions: first, that the relays are able to communicate with each other; second, that the user knows the list of available relays and their respective public keys. Tor implements therefore a distributed directory listing the relays and their keys. When a user is not able to communicate with relays directly, he has to use special bridge servers to connect to the onion network.
international conference on information security and cryptology | 2014
Paolo Palmieri; Luca Calderoni; Dario Maio
The wide availability of inexpensive positioning systems made it possible to embed them into smartphones and other personal devices. This marked the beginning of location-aware applications, where users request personalized services based on their geographic position. The location of a user is, however, highly sensitive information: the user’s privacy can be preserved if only the minimum amount of information needed to provide the service is disclosed at any time. While some applications, such as navigation systems, are based on the users’ movements and therefore require constant tracking, others only require knowledge of the user’s position in relation to a set of points or areas of interest. In this paper we focus on the latter kind of services, where location information is essentially used to determine membership in one or more geographic sets. We address this problem using Bloom Filters (BF), a compact data structure for representing sets. In particular, we present an extension of the original Bloom filter idea: the Spatial Bloom Filter (SBF). SBF’s are designed to manage spatial and geographical information in a space efficient way, and are well-suited for enabling privacy in location-aware applications. We show this by providing two multi-party protocols for privacy-preserving computation of location information, based on the known homomorphic properties of public key encryption schemes. The protocols keep the user’s exact position private, but allow the provider of the service to learn when the user is close to specific points of interest, or inside predefined areas. At the same time, the points and areas of interest remain oblivious to the user.
international conference on information security and cryptology | 2010
Paolo Palmieri; Olivier Pereira
In the information-theoretic setting, where adversaries have unlimited computational power, the fundamental cryptographic primitive Oblivious Transfer (OT) cannot be securely achieved if the parties are communicating over a clear channel. To preserve secrecy and security, the players have to rely on noise in the communication. Noisy channels are therefore a useful tool to model noise behavior and build protocols implementing OT. This paper explores a source of errors that is inherently present in practically any transmission medium, but has been scarcely studied in this context: delays in the communication. In order to have a model for the delays that is both general and comparable to the channels usually used for OT - such as the Binary Symmetric Channel (BSC) - we introduce a new noisy channel, the Binary Discrete-time Delaying Channel (BDDC). We show that such a channel realistically reproduces real-life communication scenarios where delays are hard to predict and we propose a protocol for achieving oblivious transfer over the BDDC. We analyze the security of our construction in the semi-honest setting, showing that our realization of OT substantially decreases the protocol sensitivity to the users knowledge of the channel compared to solutions relying on other channel properties, and is very efficient for wide ranges of delay probabilities. The flexibility and generality of the model opens the way for future implementation in media where delays are a fundamental characteristic.
international conference on information and communication security | 2015
Paolo Palmieri
Wireless Sensor Networks (WSN) are often deployed in hostile or difficult scenarios, such as military battlefields and disaster recovery, where it is crucial for the network to be highly fault tolerant, scalable and decentralized. For this reason, peer-to-peer primitives such as Distributed Hash Table (DHT), which can greatly enhance the scalability and resilience of a network, are increasingly being introduced in the design of WSN’s. Securing the communication within the WSN is also imperative in hostile settings. In particular, context information, such as the network topology and the location and identity of base stations (which collect data gathered by the sensors and are a central point of failure) can be protected using traffic encryption and anonymous routing. In this paper, we propose a protocol achieving a modified version of onion routing over wireless sensor networks based on the DHT paradigm. The protocol prevents adversaries from learning the network topology using traffic analysis, and therefore p reserves the context privacy of the network. Furthermore, the proposed scheme is designed to minimize the computational burden and power usage of the nodes, through a novel partitioning scheme and route selection algorithm.
international workshop on information forensics and security | 2013
Niels Zeilemaker; Zekeriya Erkin; Paolo Palmieri; Johan A. Pouwelse
Searching a Peer-to-Peer (P2P) network without using a central index has been widely investigated but proved to be very difficult. Various strategies have been proposed, however no practical solution to date also addresses privacy concerns.
financial cryptography | 2015
Paolo Palmieri; Johan A. Pouwelse
When choosing the three relays that compose a circuit, Tor selects the first hop among a restricted number of relays called entry guards, pre-selected by the user himself. The reduced number of entry guards, that until recently was fixed to three, helps in mitigating the effects of several traffic analysis attacks. However, recent literature indicates that the number should be further reduced, and the time during which the user keeps the relays as guards increased. Therefore, developers of Tor recently proposed selecting only one entry guard, which is to be used by the user for all circuits and for a prolonged period of time (nine months). While this design choice was made to increase the security of the protocol, it also opens an unprecedented opportunity for a market mechanism where relays get paid for traffic by the users.
international conference on cyber conflict | 2016
Paolo Palmieri
Access to information is crucial during conflicts and other critical events such as population uprisings. An increasing number of social interactions happen in the cyberspace, while information exchanges at the infrastructural level (monitoring systems, sensor networks, etc.) are now also based on Internet and wireless links rather than ad hoc, isolated wired networks. However, the nature of the Internet allows powerful hostile actors to block, censor, or redirect communication to and from specific Internet services, through a number of available techniques. Anonymity networks such as Tor provide a way to circumvent traditional strategies for restricting access to online resources, and make communication harder to trace and identify. Tor, in particular, has been successfully used in past crises to evade censorship and Internet blockades (Egypt in 2011, and Iran in 2012). Anonymity networks can provide essential communication tools during conflicts, allowing information exchanges to be concealed from external observers, anonymised, and made resilient to imposed traffic controls and geographical restrictions. However, the design of networks such as Tor makes them vulnerable to large-scale denial of service attacks, as shown by the DDoS targeted at Tor hidden services in March 2015. In this paper, we analyse the structural weaknesses of Tor with regard to denial of service attacks, and propose a number of modifications to the structure of the Tor network aimed at improving its resilience to a large coordinated offensive run by a hostile actor in a conflict scenario. In particular, we introduce novel mechanisms that allow relay information to be propagated in a distributed and peer-to-peer manner. This eliminates the need for directory services, and allows the deployment of Tor-like networks in hostile environments, where centralised control is impossible. The proposed improvements concern the network organisation, but preserve the underlying onion routing mechanism that is at the base of Tors anonymity.
computing frontiers | 2016
Carlos Alberca; Sergio Pastrana; Guillermo Suarez-Tangil; Paolo Palmieri
The pervasive presence of interconnected objects enables new communication paradigms where devices can easily reach each other while interacting within their environment. The so-called Internet of Things (IoT) represents the integration of several computing and communications systems aiming at facilitating the interaction between these devices. Arduino is one of the most popular platforms used to prototype new IoT devices due to its open, flexible and easy-to-use architecture. Ardunio Yun is a dual board microcontroller that supports a Linux distribution and it is currently one of the most versatile and powerful Arduino systems. This feature positions Arduino Yun as a popular platform for developers, but it also introduces unique infection vectors from the security viewpoint. In this work, we present a security analysis of Arduino Yun. We show that Arduino Yun is vulnerable to a number of attacks and we implement a proof of concept capable of exploiting some of them.