Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paolo Peretto is active.

Publication


Featured researches published by Paolo Peretto.


Biological Psychiatry | 2004

Postnatal repeated maternal deprivation produces age-dependent changes of brain-derived neurotrophic factor expression in selected rat brain regions

Mila Roceri; Francesca Cirulli; Cassandra Pessina; Paolo Peretto; Giorgio Racagni; Marco Riva

BACKGROUND Adverse life events occurring early in development may alter the correct program of brain maturation and render the organism more vulnerable to psychiatric disorders. Identification of persistent changes associated with these events is crucial for the development of novel therapeutic strategies. METHODS We used postnatal repeated maternal deprivation (MD) from postnatal day (PND) 2-14 to investigate changes in brain-derived neurotrophic factor (BDNF) levels. RNase protection assay and enzyme linked immunosorbent assay were employed to determine the anatomic profile of neurotrophin expression at different ages following MD. RESULTS We found that MD produces a short-term up-regulation of neurotrophin expression in hippocampus and prefrontal cortex, as measured on PND 17, whereas at adulthood, a selective reduction of BDNF expression was observed in prefrontal cortex. When adult animals were challenged with a chronic swim stress paradigm, both a reduced expression of BDNF in prefrontal cortex and a significant reduction in striatal protein levels were found only in control subjects, whereas levels in the MD group were not further decreased. CONCLUSIONS Our data suggest that MD produces a significant reduction of BDNF expression within prefrontal cortex and striatum, which may render these structures less plastic and more vulnerable under challenging conditions.


Brain Research Bulletin | 1999

The subependymal layer in rodents: a site of structural plasticity and cell migration in the adult mammalian brain

Paolo Peretto; Adalberto Merighi; Aldo Fasolo; Luca Bonfanti

The persistence of neurogenesis and structural plasticity was believed until recently to be restricted to lower vertebrates and songbirds. Nevertheless, it has now been ascertained that these phenomena can occur in the adult mammalian nervous system, at least in three distinct sites: the olfactory neuroepithelium of the nasal mucosa and two brain regions, namely, the hippocampal dentate gyrus and the olfactory bulb. The newly generated cells of the olfactory bulb originate from the subependymal layer, a remnant of the primitive subventricular zone persisting in the adult forebrain. Besides being characterized by high rates of cell proliferation, the subependymal layer is a site of long-distance tangential cell migration, wherein migrating cells form chains enwrapped by a particular type of astrocytes. These glial cells give rise to channels (glial tubes) that separate single chains from the surrounding mature tissue. The cellular composition and the pattern of cell migration in the mammalian subependymal layer appear to be quite different in neonatal and adult animals, changing strikingly in the postnatal period. Other features of uniqueness involve the capability of neuronal precursors to divide while undergoing migration and the presence of multipotent stem cells. Thus, the subependymal layer is an area of the adult mammalian brain endowed with a cohort of phenomena proper of neural development, persisting into (and adapted to) the fully mature nervous tissue. Such features make this system an optimal model to unravel mechanisms permitting highly dynamic structural plasticity during adulthood, in the perspective of providing strategies for possible brain repair.


The Journal of Comparative Neurology | 2005

Chain formation and glial tube assembly in the shift from neonatal to adult subventricular zone of the rodent forebrain.

Paolo Peretto; Claudio Giachino; Patrizia Aimar; Aldo Fasolo; Luca Bonfanti

The subventricular zone (SVZ) is regarded as an embryonic germinal layer persisting at the end of cerebral cortex neurogenesis and capable of generating neuronal precursors throughout life. The two distinct compartments of the adult rodent forebrain SVZ, astrocytic glial tubes and chains of migrating cells, are not distinguishable in the embryonic and early postnatal counterpart. In this study we analyzed the SVZ of mice and rats around birth and throughout different postnatal stages, describing molecular and morphological changes which lead to the typical structural arrangement of adult SVZ. In both species studied, most changes occurred during the first month of life, the transition being slightly delayed in mice, in spite of their earlier development. Important modifications affected the glial cells, eventually leading to glial tube assembly. These changes involved an overall reorganization of glial processes and their mutual relationships, as well as gliogenesis occurring within the SVZ which gives rise to glial cell subpopulations. The neuroblast cell population remained qualitatively quite homogeneous throughout all the stages investigated, changes being restricted to the relationships among cells and consequent formation of chains at about the third postnatal week. Electron microscopy showed that chain formation is not directly linked to glial tube assembly, generally preceding the occurrence of complete glial ensheathment. Moreover, chain and glial tube formation is asymmetric in the medial/lateral aspect of the SVZ, being inversely related. The attainment of an adult SVZ compartmentalization, on the other hand, seems linked to the pattern of expression of adhesion and extracellular matrix molecules. J. Comp. Neurol. 487:407–427, 2005.


Progress in Neurobiology | 1999

Carnosine-related dipeptides in the mammalian brain.

Luca Bonfanti; Paolo Peretto; S. De Marchis; Aldo Fasolo

Carnosine and structurally related dipeptides are a group of histidine-containing molecules widely distributed in vertebrate organisms and particularly abundant in muscle and nervous tissue. Although many theories have been proposed, the biological function(s) of these compounds in the nervous system remains enigmatic. The purpose of this article is to review the distribution of carnosine-related dipeptides in the mammalian brain, with particular reference to some cell populations wherein these molecules have been demonstrated to occur very recently. The high expression of carnosine in the mammalian olfactory receptor neurons led to infer that this dipeptide could play a role as a neurotransmitter/modulator in olfaction. This prediction, which has not yet been fully demonstrated, does not explain the localization of carnosine-related dipeptides in other cell types, such as glial and ependymal cells. A recent demonstration of high carnosine-like immunoreactivity in the subependymal layer of rodents, an area of the forebrain which shares with the olfactory neuroepithelium the occurrence of continuous neurogenesis during adulthood, supports the hypothesis that carnosine-related dipeptides could be implicated in some forms of structural plasticity. However, the particular distribution of these molecules in the subependymal layer, along with their expression in glial/ependymal cell populations, suggests that they are not directly linked to cell migration or cell renewal. In the absence of a unified theory about the role of carnosine-related dipeptides in the nervous system, some common features shared by different cell populations of the mammalian brain which contain these molecules are discussed.


The Journal of Neuroscience | 2007

Generation of Distinct Types of Periglomerular Olfactory Bulb Interneurons during Development and in Adult Mice: Implication for Intrinsic Properties of the Subventricular Zone Progenitor Population

Silvia De Marchis; Serena Bovetti; Barbara Carletti; Yi-Chun Hsieh; Donatella Garzotto; Paolo Peretto; Aldo Fasolo; Adam C. Puche; Ferdinando Rossi

The subventricular zone (SVZ) of the lateral ventricle develops from residual progenitors of the embryonic lateral ganglionic eminence (LGE) and maintains neurogenic activity throughout life. Precursors from LGE/SVZ migrate to the olfactory bulb (OB) where they differentiate into local interneurons, principally in the granule layer and glomerular layer (GL). By in situ dye labeling, we show that neonatal and adult SVZ progenitors differentially contribute to neurochemically distinct types of periglomerular interneurons in the GL. Namely, calbindin-positive periglomerular cells are preferentially generated during early life, whereas calretinin- and tyrosine hydroxylase-expressing neurons are mainly produced at later ages. Furthermore, homochronic/heterochronic transplantation demonstrates that progenitor cells isolated from the LGE or SVZ at different stages (embryonic day 15 and postnatal days 2 and 30) engraft into the SVZ of neonatal or adult mice, migrate to the OB, and differentiate into local interneurons, including granule and periglomerular cells as well as other types of interneurons. The total number of integrated cells and the relative proportion of granule or periglomerular neurons change, according to the donor age, whereas they are weakly influenced by the recipient age. Analysis of the neurochemical phenotypes acquired by transplanted cells in the GL shows that donor cells of different ages also differentiate according to their origin, regardless of the host age. This suggests that progenitor cells at different ontogenetic stages are intrinsically directed toward specific lineages. Neurogenic processes occurring during development and in adult OB are not equivalent and produce different types of periglomerular interneurons as a consequence of intrinsic properties of the SVZ progenitors.


The Journal of Neuroscience | 2005

cAMP response element-binding protein regulates differentiation and survival of newborn neurons in the olfactory bulb

Claudio Giachino; Silvia De Marchis; Costanza Giampietro; Rosanna Parlato; Isabelle Perroteau; Günther Schütz; Aldo Fasolo; Paolo Peretto

The transcription factor cAMP response element-binding protein (CREB) is involved in multiple aspects of neuronal development and plasticity. Here, we demonstrate that CREB regulates specific phases of adult neurogenesis in the subventricular zone/olfactory bulb (SVZ/OB) system. Combining immunohistochemistry with bromodeoxyuridine treatments, cell tracer injections, cell transplants, and quantitative analyses, we show that although CREB is expressed by the SVZ neuroblasts throughout the neurogenic process, its phosphorylation is transient and parallels neuronal differentiation, increasing during the late phase of tangential migration and decreasing after dendrite elongation and spine formation. In vitro, inhibition of CREB function impairs morphological differentiation of SVZ-derived neuroblasts. Transgenic mice lacking CREB, in a null CREM genetic background, show reduced survival of newborn neurons in the OB. This finding is further supported by peripheral afferent denervation experiments resulting in downregulation of CREB phosphorylation in neuroblasts, the survival of which appears heavily impaired. Together, these findings provide evidence that CREB regulates differentiation and survival of newborn neurons in the OB.


European Journal of Neuroscience | 2011

Adult neurogenesis in mammals – a theme with many variations

Luca Bonfanti; Paolo Peretto

Investigations of adult neurogenesis in recent years have revealed numerous differences among mammalian species, reflecting the remarkable diversity in brain anatomy and function of mammals. As a mechanism of brain plasticity, adult neurogenesis might also differ due to behavioural specialization or adaptation to specific ecological niches. Because most research has focused on rodents and only limited data are available on other mammalian orders, it is hotly debated whether, in some species, adult neurogenesis also takes place outside of the well‐characterized subventricular zone of the lateral ventricle and subgranular zone of the dentate gyrus. In particular, evidence for the functional integration of new neurons born in ‘non‐neurogenic’ zones is controversial. Considering the promise of adult neurogenesis for regenerative medicine, we posit that differences in the extent, regional occurrence and completion of adult neurogenesis need to be considered from a species‐specific perspective. In this review, we provide examples underscoring that the mechanisms of adult neurogenesis cannot simply be generalized to all mammalian species. Despite numerous similarities, there are distinct differences, notably in neuronal maturation, survival and functional integration in existing synaptic circuits, as well as in the nature and localization of neural precursor cells. We also propose a more appropriate use of terminology to better describe these differences and their relevance for brain plasticity under physiological and pathophysiological conditions. In conclusion, we emphasize the need for further analysis of adult neurogenesis in diverse mammalian species to fully grasp the spectrum of variation of this adaptative mechanism in the adult CNS.


The Journal of Neuroscience | 2006

Neurogenesis in the Caudate Nucleus of the Adult Rabbit

Federico Luzzati; Silvia De Marchis; Aldo Fasolo; Paolo Peretto

Stem cells with the potential to give rise to new neurons reside in different regions of the adult rodents CNS, but in vivo only the hippocampal dentate gyrus and the subventricular zone-olfactory bulb system are neurogenic under physiological condition. Comparative analyses have shown that vast species differences exist in the way the mammalian brain is organized and in its neurogenic capacity. Accordingly, we have demonstrated recently that, in the adult rabbit brain, striking structural plasticity persists in several cortical and subcortical areas. Here, by using markers for immature and mature neuronal and glial cell types, endogenous and exogenously administered cell-proliferation markers, intraventricular cell tracer injections coupled to confocal analysis, three-dimensional reconstructions, and in vitro tissue cultures, we demonstrate the existence of newly formed neurons in the caudate nucleus of normal, untreated, adult rabbit. Our results suggest that neurogenesis in the caudate nucleus is a phenomenon independent from that occurring in the adjacent subventricular zone, mostly attributable to the activity of clusters of proliferating cells located within the parenchyma of this nucleus. These clusters originate chains of neuroblasts that ultimately differentiate into mature neurons, which represent only a small percentage of the total neuronal precursors. These results indicate that striatum of rabbit represents a favorable environment for genesis rather than survival of newly formed neurons.


PLOS ONE | 2008

Genesis of Neuronal and Glial Progenitors in the Cerebellar Cortex of Peripuberal and Adult Rabbits

Giovanna Ponti; Paolo Peretto; Luca Bonfanti

Adult neurogenesis in mammals is restricted to some brain regions, in contrast with other vertebrates in which the genesis of new neurons is more widespread in different areas of the nervous system. In the mammalian cerebellum, neurogenesis is thought to be limited to the early postnatal period, coinciding with end of the granule cell genesis and disappearance of the external granule cell layer (EGL). We recently showed that in the rabbit cerebellum the EGL is replaced by a proliferative layer called ‘subpial layer’ (SPL) which persists beyond puberty on the cerebellar surface. Here we investigated what happens in the cerebellar cortex of peripuberal rabbits by using endogenous and exogenously-administered cell proliferation antigens in association with a cohort of typical markers for neurogenesis. We show that cortical cell progenitors extensively continue to be generated herein. Surprisingly, this neurogenic process continues to a lesser extent in the adult, even in the absence of a proliferative SPL. We describe two populations of newly generated cells, involving neuronal cells and multipolar, glia-like cells. The genesis of neuronal precursors is restricted to the molecular layer, giving rise to cells immunoreactive for GABA, and for the transcription factor Pax2, a marker for GABAergic cerebellar interneuronal precursors of neuroepithelial origin that ascend through the white matter during early postnatal development. The multipolar cells are Map5+, contain Olig2 and Sox2 transcription factors, and are detectable in all cerebellar layers. Some dividing Sox2+ cells are Bergmann glia cells. All the cortical newly generated cells are independent from the SPL and from granule cell genesis, the latter ending before puberty. This study reveals that adult cerebellar neurogenesis can exist in some mammals. Since rabbits have a longer lifespan than rodents, the protracted neurogenesis within its cerebellar parenchyma could be a suitable model for studying adult nervous tissue permissiveness in mammals.


European Journal of Neuroscience | 2007

BDNF/ TrkB interaction regulates migration of SVZ precursor cells via PI3‐K and MAP‐K signalling pathways

S. Chiaramello; G. Dalmasso; L. Bezin; Dominique Marcel; François Jourdan; Paolo Peretto; Aldo Fasolo; S. De Marchis

Neuroblasts born in the subventricular zone (SVZ) migrate along the rostral migratory stream, reaching the olfactory bulb (OB) where they differentiate into local interneurons. Several extracellular factors have been suggested to control specific steps of this process. The brain‐derived neurotrophic factor (BDNF) has been demonstrated to promote morphological differentiation and survival of OB interneurons. Here we show that BDNF and its receptor TrkB are expressed in vivo throughout the migratory pathway, implying that BDNF might also mediate migratory signals. By using in vitro models we demonstrate that BDNF promotes migration of SVZ neuroblasts, acting both as inducer and attractant through TrkB activation. We show that BDNF induces cAMP response element‐binding protein (CREB) activation in migrating neuroblasts via phosphatidylinositol 3‐kinase (PI3‐K) and mitogen‐activated protein kinase (MAP‐K) signalling. Pharmacological blockade of these pathways on SVZ explants significantly reduces CREB activation and impairs neuronal migration. This study identifies a function of BDNF in the SVZ system, which involves multiple protein kinase pathways leading to neuroblast migration.

Collaboration


Dive into the Paolo Peretto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Serena Bovetti

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge