Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paolo Tarolli is active.

Publication


Featured researches published by Paolo Tarolli.


Science of The Total Environment | 2016

The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards.

Massimo Prosdocimi; A. Jordán; Paolo Tarolli; Saskia Keesstra; Agata Novara; Artemi Cerdà

Soil and water loss in agriculture is a major problem throughout the world, and especially in Mediterranean areas. Non-conservation agricultural practices have further aggravated the situation, especially in vineyards, which are affected by one of the highest rates of soil loss among cultivated lands. Therefore, it is necessary to find the right soil practices for more sustainable viticulture. In this regard, straw mulching has proven to be effective in other crop and fire affected soils, but, nonetheless, little research has been carried out in vineyards. This research tests the effect of barley straw mulching on soil erosion and surface runoff on vineyards in Eastern Spain where the soil and water losses are non-sustainable. An experiment was setup using rainfall simulation tests at 55 mm h(-1) over 1h on forty paired plots of 0.24 m(2): twenty bare and twenty straw covered. Straw cover varied from 48 to 90% with a median value of 59% as a result of the application of 75 g of straw per m(2). The use of straw mulch resulted in delayed ponding and runoff generation and, as a consequence, the median water loss decreased from 52.59 to 39.27% of the total rainfall. The straw cover reduced the median sediment concentration in runoff from 9.8 to 3.0 g L(-1) and the median total sediment detached from 70.34 to 15.62 g per experiment. The median soil erosion rate decreased from 2.81 to 0.63 Mg ha(-1)h(-1) due to the straw mulch protection. Straw mulch is very effective in reducing soil erodibility and surface runoff, and this benefit was achieved immediately after the application of the straw.


European Journal of Remote Sensing | 2013

Recognition of surface flow processes influenced by roads and trails in mountain areas using high-resolution topography

Paolo Tarolli; Simone Calligaro; F. Cazorzi; Giancarlo Dalla Fontana

Abstract Road networks in mountainous forest landscapes have the potential to increase the susceptibility to erosion and shallow landsliding. The same issue is observed also for minor trail networks, with evidences of surface erosion due to surface flow redistribution. This could be a problem in regions such as the Italian Alps where forestry and tourist activities are a relevant part of the local economy. This is just one among the several effects of modern anthropogenic forcing: it is now well accepted by the scientific community that we are living in a new era where human activities may leave a significant signature on the Earth, by altering its morphology, and significantly affecting the related surface processes. In this work, we proposed a methodology for the automatic recognition of roads and trails induced flow direction changes. The algorithm is based on the calculation of the drainage area variation in the presence, or in the absence of anthropic features such as roads and trails on hillslopes. To simulate the absence of alteration, the surface was smoothed considering moving windows of varying size. In the analysis, we used a 1 and 0.5 m Airborne Laser Swath Mapping technology (ALSM), using LiDAR (Light Detection And Ranging), and 0.2 m Terrestrial Laser Scanner (TLS) derived Digital Terrain Models (DTMs). The aim of the work is to underline the effectiveness of the proposed method based on high resolution topography in the detailed recognition of surface flow direction alteration due to roads, but also trail networks. We propose an automatic method to map at a large scale such alterations, also in areas where it is difficult to recognize them without a trail network surveyed in the field. This methodology could be considered as a support for modeling (i.e., terrain stability and erosion models), and it can be used to interactively assist the design of new infrastructure to reduce their effects on surface instabilities. The reported methodology could also have a role in risk management and environmental planning for mountain areas where tourism and the related economic activities are critical, and where also trails deserve attention due to induced slope instabilities.


Geografiska Annaler Series A-physical Geography | 2013

Current Behaviour and Dynamics of the Lowermost Italian Glacier (Montasio Occidentale, Julian Alps)

Luca Carturan; Giovanni A. Baldassi; Aldino Bondesan; Simone Calligaro; Alberto Carton; F. Cazorzi; Giancarlo Dalla Fontana; Roberto Francese; Alberto Guarnieri; Nicola Milan; Daniele Moro; Paolo Tarolli

Abstract Smaller glaciers (<0.5 km2) react quickly to environmental changes and typically show a large scatter in their individual response. Accounting for these ice bodies is essential for assessing regional glacier change, given their high number and contribution to the total loss of glacier area in mountain regions. However, studying small glaciers using traditional techniques may be difficult or not feasible, and assessing their current activity and dynamics may be problematic. In this paper, we present an integrated approach for characterizing the current behaviour of a small, avalanche‐fed glacier at low altitude in the talian lps, combining geomorphological, geophysical and high‐resolution geodetic surveying with a terrestrial laser scanner. The glacier is still active and shows a detectable mass transfer from the accumulation area to the lower ablation area, which is covered by a thick debris mantle. The glacier owes its existence to the local topo‐climatic conditions, ensured by high rock walls which enhance accumulation by delivering avalanche snow and reduce ablation by providing topographic shading and regulating the debris budget of the glacier catchment. In the last several years the glacier has displayed peculiar behaviour compared with most glaciers of the uropean lps, being close to equilibrium conditions in spite of warm ablation seasons. Proportionally small relative changes have also occurred since the Little Ice Age maximum. Compared with the majority of other Alpine glaciers, we infer for this glacier a lower sensitivity to air temperature and a higher sensitivity to precipitation, associated with important feedback from increasing debris cover during unfavourable periods.


Science of The Total Environment | 2017

Rainfall simulation and Structure-from-Motion photogrammetry for the analysis of soil water erosion in Mediterranean vineyards

Massimo Prosdocimi; María Burguet; Simone Di Prima; Giulia Sofia; Enric Terol; Jesús Rodrigo Comino; Artemi Cerdà; Paolo Tarolli

Soil water erosion is a serious problem, especially in agricultural lands. Among these, vineyards deserve attention, because they constitute for the Mediterranean areas a type of land use affected by high soil losses. A significant problem related to the study of soil water erosion in these areas consists in the lack of a standardized procedure of collecting data and reporting results, mainly due to a variability among the measurement methods applied. Given this issue and the seriousness of soil water erosion in Mediterranean vineyards, this works aims to quantify the soil losses caused by simulated rainstorms, and compare them with each other depending on two different methodologies: (i) rainfall simulation and (ii) surface elevation change-based, relying on high-resolution Digital Elevation Models (DEMs) derived from a photogrammetric technique (Structure-from-Motion or SfM). The experiments were carried out in a typical Mediterranean vineyard, located in eastern Spain, at very fine scales. SfM data were obtained from one reflex camera and a smartphone built-in camera. An index of sediment connectivity was also applied to evaluate the potential effect of connectivity within the plots. DEMs derived from the smartphone and the reflex camera were comparable with each other in terms of accuracy and capability of estimating soil loss. Furthermore, soil loss estimated with the surface elevation change-based method resulted to be of the same order of magnitude of that one obtained with rainfall simulation, as long as the sediment connectivity within the plot was considered. High-resolution topography derived from SfM revealed to be essential in the sediment connectivity analysis and, therefore, in the estimation of eroded materials, when comparing them to those derived from the rainfall simulation methodology. The fact that smartphones built-in cameras could produce as much satisfying results as those derived from reflex cameras is a high value added for using SfM.


International Journal of Applied Earth Observation and Geoinformation | 2015

Open-pit mining geomorphic feature characterisation

Jianping Chen; Ke Li; Kuo-Jen Chang; Giulia Sofia; Paolo Tarolli

Abstract Among the anthropogenic topographic signatures on Earth, open-pit mines are of great importance. Mining is of interest to geomorphologists and environmental researchers because of its implication in geomorphic hazards and processes. In addition, open-pit mines and quarries are considered the most dangerous industrial sector, with injuries and accidents occurring in numerous countries. Their fast, accurate and low-cost investigation, therefore, represents a challenge for the Earth science community. The purpose of this work is to characterise the open-pit mining features using high-resolution topography and a recently published landscape metric, the Slope Local Length of Auto-Correlation (SLLAC) ( Sofia et al., 2014 ). As novel steps, aside from the correlation length, the terrace’s orientation is also calculated, and a simple empirical model to derive the percentage of artificial surfaces is tested. The research focuses on two main case studies of iron mines, both located in the Beijing district (P.R. China). The main topographic information (Digital Surface Models, DSMs) was derived using an Unmanned Aerial Vehicle (UAV) and the Structure from Motion (SfM) photogrammetric technique. The results underline the effectiveness of the adopted methodologies and survey techniques in the characterisation of the main mine’s geomorphic features. Thanks to the SLLAC, the terraced area given by open-cast/open-pit mining for iron extraction is automatically depicted, thus, allowing researchers to quickly estimate the surface covered by the open-pit. This information could be used as a starting point for future research (i) given the availability of multi-temporal surveys to track the changes in the extent of the mine; (ii) to relate the extent of the mines to the amount of processes in the area (e.g. pollution, erosion, etc.), and to (iii) combine the two points, and analyse the effects of the change related to changes in erosion. The analysis of the correlation length orientation also allows researchers to identify the terrace’s orientation and to understand the shape of the open-pit area. The tectonic environment and history, or inheritance, of a given slope can determine if and how it fails, and the orientation of the topographic surface or excavation face, with respect to geologic features, is of major significance. Therefore, the proposed approach can provide a basis for a large-scale and low-cost topographic survey for sustainable environmental planning and, for example, for the mitigation of environmental anthropogenic impacts due to mining.


Water Resources Research | 2015

Controls on the diurnal streamflow cycles in two subbasins of an alpine headwater catchment

Raphaël Mutzner; Steven Vincent Weijs; Paolo Tarolli; Marc Calaf; Holly Jayne Oldroyd; Marc B. Parlange

In high-altitude alpine catchments, diurnal streamflow cycles are typically dominated by snowmelt or ice melt. Evapotranspiration-induced diurnal streamflow cycles are less observed in these catchments but might happen simultaneously. During a field campaign in the summer 2012 in an alpine catchment in the Swiss Alps (Val Ferret catchment, 20.4 km2, glaciarized area: 2%), we observed a transition in the early season from a snowmelt to an evapotranspiration-induced diurnal streamflow cycle in one of two monitored subbasins. The two different cycles were of comparable amplitudes and the transition happened within a time span of several days. In the second monitored subbasin, we observed an ice melt-dominated diurnal cycle during the entire season due to the presence of a small glacier. Comparisons between ice melt and evapotranspiration cycles showed that the two processes were happening at the same times of day but with a different sign and a different shape. The amplitude of the ice melt cycle decreased exponentially during the season and was larger than the amplitude of the evapotranspiration cycle which was relatively constant during the season. Our study suggests that an evapotranspiration-dominated diurnal streamflow cycle could damp the ice melt-dominated diurnal streamflow cycle. The two types of diurnal streamflow cycles were separated using a method based on the identification of the active riparian area and measurement of evapotranspiration.


Scientific Reports | 2017

Flood dynamics in urbanised landscapes: 100 years of climate and humans’ interaction

Giulia Sofia; Giulia Roder; G. Dalla Fontana; Paolo Tarolli

Raising interest in the interaction between humans and climate drivers to understand the past and current development of floods in urbanised landscapes is of great importance. This study presents a regional screening of land-use, rainfall regime and flood dynamics in north-eastern Italy, covering the timeframe 1900–2010. This analysis suggests that, statistically, both climate and land-use have been contributing to a significant increase of the contribution of short duration floods to the increase in the number of flooded locations. The analysis also suggests that interaction arises, determining land-use dynamics to couple with climatic changes influencing the flood aggressiveness simultaneously. Given that it is not possible to control the climatic trend, an effective disaster management clearly needs an integrated approach to land planning and supervision. This research shows that land management and planning should include the investigation of the location of the past and future social and economic drivers for development, as well as past and current climatic trends.


IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 2016

Comparison of Pleiades and LiDAR Digital Elevation Models for Terraces Detection in Farmlands

Giulia Sofia; Jean-Stéphane Bailly; Nesrine Chehata; Paolo Tarolli; Florent Levavasseur

Among the most evident anthropogenic modifications of the landscape, terraces related to agricultural activities are ubiquitous structures that constitute important investments worldwide, and they recently acquired a new relevance to modern concerns about land-use management and erosion control. Conservation agriculture and terraces management are an application with great potentialities for Satellite Earth observation and the derived high-resolution topography. Due to its high agility, the Pleiades satellite constellation provides new, high-resolution digital elevation models (DEMs) with a submetric resolution that could be potentially useful for this task, and their application in a farmland context is nowadays an open research line. This work provides a first analysis, performing an automatic terrace mapping from DEMs obtained from Pleiades images, as compared to LiDAR DEMs. Two existing methods are considered: 1) the fast line segment detector (LSD) algorithm and 2) a geomorphometric method based on surface curvature. Despite the lower performances of Pleiades DEMs with respect to that of the LiDAR models, the results indicate that the Pleiades models can be used to automatically detect terrace slopes greater than 2 m with a detection rate of more than 80% of the total length of the terraces. In addition, the results showed that when using noisy DEMs, the geomorphometric method is more robust, and it slightly outperforms the LSD algorithm. These results provide a first analysis on how effective Pleiades DEMs can be as an alternative to LiDAR DEMs, also highlighting the future challenges for monitoring large extents in a farmland context.


Journal of Mountain Science | 2017

Geometrical feature analysis and disaster assessment of the Xinmo landslide based on remote sensing data

Jianrong Fan; Xi-yu Zhang; Feng-huan Su; Yonggang Ge; Paolo Tarolli; Zheng-yin Yang; Chao Zeng; Zhen Zeng

At 5:39 am on June 24, 2017, a landslide occurred in the village of Xinmo in Maoxian County, Aba Tibet and Qiang Autonomous Prefecture (Sichuan Province, Southwest China). On June 25, aerial images were acquired from an unmanned aerial vehicle (UAV), and a digital elevation model (DEM) was processed. Landslide geometrical features were then analyzed. These are the front and rear edge elevation, accumulation area and horizontal sliding distance. Then, the volume and the spatial distribution of the thickness of the deposit were calculated from the difference between the DEM available before the landslide, and the UAV-derived DEM collected after the landslide. Also, the disaster was assessed using high-resolution satellite images acquired before the landslide. These include QuickBird, Pleiades-1 and GF-2 images with spatial resolutions of 0.65 m, 0.70 m, and 0.80 m, respectively, and the aerial images acquired from the UAV after the landslide with a spatial resolution of 0.1 m. According to the analysis, the area of the landslide was 1.62 km2, and the volume of the landslide was 7.70 ± 1.46 million m3. The average thickness of the landslide accumulation was approximately 8 m. The landslide destroyed a total of 103 buildings. The area of destroyed farmlands was 2.53 ha, and the orchard area was reduced by 28.67 ha. A 2-km section of Songpinggou River was blocked and a 2.1-km section of township road No. 104 was buried. Constrained by the terrain conditions, densely populated and more economically developed areas in the upper reaches of the Minjiang River basin are mainly located in the bottom of the valleys. This is a dangerous area regarding landslide, debris flow and flash flood events. Therefore, in mountainous, high-risk disaster areas, it is important to carefully select residential sites to avoid a large number of casualties.


Environmental Science and Pollution Research | 2015

Assessment of energy potential from wetland plants along the minor channel network on an agricultural floodplain

Salvatore Pappalardo; Massimo Prosdocimi; Paolo Tarolli; Maurizio Borin

Renewable energy sources such as biomasses can play a pivotal role to ensure security of energy supply and reduce greenhouse gases through the substitution of fossil fuels. At present, bioenergy is mainly derived from cultivated crops that mirror the environmental impacts from the intensification of agricultural systems for food production. Instead, biomass from perennial herbaceous species growing in wetland ecosystems and marginal lands has recently aroused interest as bioenergy for electricity and heat, methane and 2nd-generation bioethanol. The aim of this paper is to assess, at local scale, the energy potential of wetland vegetation growing along the minor hydrographic network of a reclamation area in Northeast Italy, by performing energy scenarios for combustion, methane and 2nd-generation ethanol. The research is based on a cross-methodology that combines survey analyses in the field with a GIS-based approach: the former consists of direct measurements and biomass sampling, the latter of spatial analyses and scaling up simulations at the minor channel network level. Results highlight that biomass from riparian zones could represent a significant source of bioenergy for combustion transformation, turning the disposal problem to cut and store in situ wetland vegetation into an opportunity to produce sustainable renewable energy at local scale.

Collaboration


Dive into the Paolo Tarolli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Cavalli

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raphaël Mutzner

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge