Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paolo Zucca is active.

Publication


Featured researches published by Paolo Zucca.


Molecules | 2014

Inorganic Materials as Supports for Covalent Enzyme Immobilization: Methods and Mechanisms

Paolo Zucca; Enrico Sanjust

Several inorganic materials are potentially suitable for enzymatic covalent immobilization, by means of several different techniques. Such materials must meet stringent criteria to be suitable as solid matrices: complete insolubility in water, reasonable mechanical strength and chemical resistance under the operational conditions, the capability to form manageable particles with high surface area, reactivity towards derivatizing/functionalizing agents. Non-specific protein adsorption should be always considered when planning covalent immobilization on inorganic solids. A huge mass of experimental work has shown that silica, silicates, borosilicates and aluminosilicates, alumina, titania, and other oxides, are the materials of choice when attempting enzyme immobilizations on inorganic supports. More recently, some forms of elemental carbon, silicon, and certain metals have been also proposed for certain applications. With regard to the derivatization/functionalization techniques, the use of organosilanes through silanization is undoubtedly the most studied and the most applied, although inorganic bridge formation and acylation with selected acyl halides have been deeply studied. In the present article, the most common inorganic supports for covalent immobilization of the enzymes are reviewed, with particular focus on their advantages and disadvantages in terms of enzyme loadings, operational stability, undesired adsorption, and costs. Mechanisms and methods for covalent immobilization are also discussed, focusing on the most widespread activating approaches (such as glutaraldehyde, cyanogen bromide, divinylsulfone, carbodiimides, carbonyldiimidazole, sulfonyl chlorides, chlorocarbonates, N-hydroxysuccinimides).


Molecules | 2016

Agarose and Its Derivatives as Supports for Enzyme Immobilization

Paolo Zucca; Roberto Fernandez-Lafuente; Enrico Sanjust

Agarose is a polysaccharide obtained from some seaweeds, with a quite particular structure that allows spontaneous gelation. Agarose-based beads are highly porous, mechanically resistant, chemically and physically inert, and sharply hydrophilic. These features—that could be further improved by means of covalent cross-linking—render them particularly suitable for enzyme immobilization with a wide range of derivatization methods taking advantage of chemical modification of a fraction of the polymer hydroxyls. The main properties of the polymer are described here, followed by a review of cross-linking and derivatization methods. Some recent, innovative procedures to optimize the catalytic activity and operational stability of the obtained preparations are also described, together with multi-enzyme immobilized systems and the main guidelines to exploit their performances.


Food and Chemical Toxicology | 2012

Chemical composition and effect on intestinal Caco-2 cell viability and lipid profile of fixed oil from Cynomorium coccineum L.

Antonella Rosa; Antonio Rescigno; Alessandra Piras; Angela Atzeri; Paola Scano; Silvia Porcedda; Paolo Zucca; M. Assunta Dessì

Cynomorium coccineum L. is a non-photosynthetic plant, spread over Mediterranean countries, amply used in traditional medicine. We investigated the composition and effect on intestinal Caco-2 cell viability and lipid profile of fixed oil obtained from dried stems of the plant. Oil isolation has been performed by supercritical fractioned extraction with CO2. 13C NMR spectroscopy has been used to study the molecular composition of oil lipids; fatty acid composition was identified using GC and HPLC techniques. The fixed oil was composed mainly by triacylglycerols and derivates. The main fatty acids were 18:1 n-9 (38%), 18:2 n-6 (20%), 16:0 (15%), and 18:3 n-3 (10.8%). The oil showed a significant in vitro inhibitory effect on the growth of colon cancer undifferentiated Caco-2 cells. Moreover, cell viability, lipid composition, and lipid peroxidation were measured in intestinal epithelial cells (differentiated Caco-2 cells) after 24 h incubation with fixed oil. The oil did not show a toxic effect on colon epithelial cell viability but induced a significant change in fatty acid composition, with a significant accumulation of the essential fatty acids 18:3 n-3 and 18:2 n-6. The results showed remarkable biological activity of Maltese mushroom oil, and qualify it as a potential resource for food/pharmaceutical applications.


Phytochemistry | 2013

Isolation and characterization of polyphenol oxidase from Sardinian poisonous and non-poisonous chemotypes of Ferula communis (L.).

Paolo Zucca; Enrico Sanjust; Martina Loi; Francesca Sollai; Mauro Ballero; Manuela Pintus; Antonio Rescigno

Ferula communis (L.), a plant belonging to Apiaceae, is widely present in Sardinia, Italy. Currently, interest in F. communis focuses on the presence of two chemotypes in the wild. One chemotype is poisonous to animals, whereas the other chemotype is non-poisonous. Polyphenol oxidase (PPO) has been extracted and partially purified from the two chemotypes of F. communis. The biochemical characterization of the enzymes showed significant differences. In particular, while the two PPOs were not able to use 6- and 7-hydroxycoumarin as substrates, they showed distinct specificity for 6,7- and 7,8-dihydroxycoumarin. Significant differences in the enzyme behavior towards common PPO inhibitors were also observed. In addition, activation energy and activation energy for denaturation were determined, showing significant differences between FP-PPO and FNP-PPO, particularly for denaturation kinetics. The possible roles of the two PPOs in determining differences in composition and toxicity of the two F. communis chemotypes are also discussed.


Chemistry Central Journal | 2012

Degradation of textile dyes using immobilized lignin peroxidase-like metalloporphines under mild experimental conditions

Paolo Zucca; Antonio Rescigno; Manuela Pintus; Andrea C. Rinaldi; Enrico Sanjust

BackgroundSynthetic dyes represent a broad and heterogeneous class of durable pollutants, that are released in large amounts by the textile industry. The ability of two immobilized metalloporphines (structurally emulating the ligninolytic peroxidases) to bleach six chosen dyes (alizarin red S, phenosafranine, xylenol orange, methylene blue, methyl green, and methyl orange) was compared to enzymatic catalysts. To achieve a green and sustainable process, very mild conditions were chosen.ResultsIPS/MnTSPP was the most promising biomimetic catalyst as it was able to effectively and quickly bleach all tested dyes. Biomimetic catalysis was fully characterized: maximum activity was centered at neutral pH, in the absence of any organic solvent, using hydrogen peroxide as the oxidant. The immobilized metalloporphine kept a large part of its activity during multi-cycle use; however, well-known redox mediators were not able to increase its catalytic activity. IPS/MnTSPP was also more promising for use in industrial applications than its enzymatic counterparts (lignin peroxidase, laccase, manganese peroxidase, and horseradish peroxidase).ConclusionsOn the whole, the conditions were very mild (standard pressure, room temperature and neutral pH, using no organic solvents, and the most environmental-friendly oxidant) and a significant bleaching and partial mineralization of the dyes was achieved in approximately 1 h. Therefore, the process was consistent with large-scale applications. The biomimetic catalyst also had more promising features than the enzymatic catalysts.


Bioscience, Biotechnology, and Biochemistry | 2009

Cofactor recycling for selective enzymatic biotransformation of cinnamaldehyde to cinnamyl alcohol.

Paolo Zucca; Maria Littarru; Antonio Rescigno; Enrico Sanjust

The enzymatic, selective hydrogenation of cinnamaldehyde to cinnamyl alcohol is reported here. Yeast alcohol dehydrogenase was used in a substrate-coupled process with cofactor recycling. Both 100% selectivity and aldehyde conversion were achieved within 3 h. The reaction took place under very mild conditions, in the absence of toxic organic solvent. The overall process proved inexpensive and deserves further optimization studies in order to evaluate industrial applications.


Natural Product Research | 2008

Mediterranean shrubs as potential antioxidant sources

Enrico Sanjust; Giuseppe Mocci; Paolo Zucca; Antonio Rescigno

Several Mediterranean shrubs, both autochthonous and naturalized, have been traditionally used as food, flavouring and/or spicing agents, and as phytopharmaceuticals. The interest around ‘natural’ and ‘biological’ products is steadily increasing in developed countries. Therefore, it seems reasonable to screen some shrubs with regard to the actual information about their content of phytochemicals, in relation to both real and putative beneficial properties, and with particular concern to their ‘antioxidant’ power. Moreover, striking molecules from the examined shrubs are compared according to their occurrence in the various genera. Also, their structures and structure/activity relationship are discussed in the light of possible practical application.


Nutrients | 2013

Evaluation of antioxidant potential of “maltese mushroom” (Cynomorium coccineum) by means of multiple chemical and biological assays.

Paolo Zucca; Antonella Rosa; Carlo Ignazio Giovanni Tuberoso; Alessandra Piras; Andrea C. Rinaldi; Enrico Sanjust; Maria Assunta Dessì; Antonio Rescigno

Cynomorium coccineum is an edible, non-photosynthetic plant widespread along the coasts of the Mediterranean Sea. The medicinal properties of Maltese mushroom—one of the oldest vernacular names used to identify this species—have been kept in high regard since ancient times to the present day. We evaluated the antioxidant potential of fresh specimens of C. coccineum picked in Sardinia, Italy. Both aqueous and methanolic extracts were tested by using multiple assay systems (DPPH, FRAP, TEAC, ORAC-PYR). Total phenolics and flavonoids were also determined. Gallic acid and cyanidin 3-O-glucoside were identified as the main constituents and measured. Both extracts showed antioxidant capacities; ORAC-PYR assay gave the highest antioxidant value in both cases. The methanolic extract was further investigated with in vitro biological models of lipid oxidation; it showed a significant activity in preventing cholesterol degradation and exerted protection against Cu2+-mediated degradation of the liposomal unsaturated fatty acids. Results of the present study demonstrate that the extracts of C. coccineum show a significant total antioxidant power and also exert an in vitro protective effect in different bio-assays of oxidative stress. Therefore, Maltese mushroom can be considered a valuable source of antioxidants and phytochemicals useful in the preparation of nutraceuticals and functional foods.


Drug Testing and Analysis | 2011

Vanilloid Derivatives as Tyrosinase Inhibitors Driven by Virtual Screening‐Based QSAR Models

Antonio Rescigno; Gerardo M. Casañola-Martín; Enrico Sanjust; Paolo Zucca; Yovani Marrero-Ponce

A number of vanilloids have been tested as tyrosinase inhibitors using Ligand-Based Virtual Screening (LBVS) driven by QSAR (Quantitative Structure-Activity Relationship) models as the multi-agent classification system. A total of 81 models were used to screen this family. Then, a preliminary cluster analysis of the selected chemicals was carried out based on their bioactivity to detect possible similar substructural features among these compounds and the active database used in the QSAR model construction. The compounds identified were tested in vitro to corroborate the results obtained in silico. Among them, two chemicals, isovanillin (K(M) (app) = 1.08 mM) near to kojic acid (reference drug) in one cluster and isovanillyl alcohol (K(M) (app) = 0.88 mM) at the same distance as hydroquinone (reference drug) in another cluster showed inhibitory activity against tyrosinase. The algorithm proposed here could result in a suitable approach for faster and more effective identification of hit and/or lead compounds with tyrosinase inhibitory activity, helping to shorten the long pipeline in the research of novel depigmenting agents to treat skin disorders.


Molecules | 2016

Immobilized Lignin Peroxidase-Like Metalloporphyrins as Reusable Catalysts in Oxidative Bleaching of Industrial Dyes.

Paolo Zucca; Cláudia Neves; Mário M.Q. Simões; M. G. P. M. S. Neves; Gianmarco Cocco; Enrico Sanjust

Synthetic and bioinspired metalloporphyrins are a class of redox-active catalysts able to emulate several enzymes such as cytochromes P450, ligninolytic peroxidases, and peroxygenases. Their ability to perform oxidation and degradation of recalcitrant compounds, including aliphatic hydrocarbons, phenolic and non-phenolic aromatic compounds, sulfides, and nitroso-compounds, has been deeply investigated. Such a broad substrate specificity has suggested their use also in the bleaching of textile plant wastewaters. In fact, industrial dyes belong to very different chemical classes, being their effective and inexpensive oxidation an important challenge from both economic and environmental perspective. Accordingly, we review here the most widespread synthetic metalloporphyrins, and the most promising formulations for large-scale applications. In particular, we focus on the most convenient approaches for immobilization to conceive economical affordable processes. Then, the molecular routes of catalysis and the reported substrate specificity on the treatment of the most diffused textile dyes are encompassed, including the use of redox mediators and the comparison with the most common biological and enzymatic alternative, in order to depict an updated picture of a very promising field for large-scale applications.

Collaboration


Dive into the Paolo Zucca's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carla Vinci

University of Cagliari

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge