Pär K. Ingvarsson
Swedish University of Agricultural Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pär K. Ingvarsson.
Nature | 2013
Björn Nystedt; Nathaniel R. Street; Anna Wetterbom; Andrea Zuccolo; Yao-Cheng Lin; Douglas G. Scofield; Francesco Vezzi; Nicolas Delhomme; Stefania Giacomello; Andrey Alexeyenko; Riccardo Vicedomini; Kristoffer Sahlin; Ellen Sherwood; Malin Elfstrand; Lydia Gramzow; Kristina Holmberg; Jimmie Hällman; Olivier Keech; Lisa Klasson; Maxim Koriabine; Melis Kucukoglu; Max Käller; Johannes Luthman; Fredrik Lysholm; Totte Niittylä; Åke Olson; Nemanja Rilakovic; Carol Ritland; Josep A. Rosselló; Juliana Stival Sena
Conifers have dominated forests for more than 200 million years and are of huge ecological and economic importance. Here we present the draft assembly of the 20-gigabase genome of Norway spruce (Picea abies), the first available for any gymnosperm. The number of well-supported genes (28,354) is similar to the >100 times smaller genome of Arabidopsis thaliana, and there is no evidence of a recent whole-genome duplication in the gymnosperm lineage. Instead, the large genome size seems to result from the slow and steady accumulation of a diverse set of long-terminal repeat transposable elements, possibly owing to the lack of an efficient elimination mechanism. Comparative sequencing of Pinus sylvestris, Abies sibirica, Juniperus communis, Taxus baccata and Gnetum gnemon reveals that the transposable element diversity is shared among extant conifers. Expression of 24-nucleotide small RNAs, previously implicated in transposable element silencing, is tissue-specific and much lower than in other plants. We further identify numerous long (>10,000 base pairs) introns, gene-like fragments, uncharacterized long non-coding RNAs and short RNAs. This opens up new genomic avenues for conifer forestry and breeding.
Heredity | 2000
Michael C. Whitlock; Pär K. Ingvarsson; Todd Hatfield
We use Wright’s distribution of equilibrium allele frequency to demonstrate that hybrids between populations interconnected by low to moderate levels of migration can have large positive heterosis, especially if the populations are small in size. Beneficial alleles neither fix in all populations nor equilibrate at the same frequency. Instead, populations reach a mutation–selection–drift–migration balance with sufficient among-population variance that some partially recessive, deleterious mutations can be masked upon crossbreeding. This heterosis is greatest with intermediate mutation rates, intermediate selection coefficients, low migration rates and recessive alleles. Hybrid vigour should not be taken as evidence for the complete isolation of populations. Moreover, we show that heterosis in crosses between populations has a different genetic basis than inbreeding depression within populations and is much more likely to result from alleles of intermediate effect.
Genetica | 2003
Douglas R. Taylor; Pär K. Ingvarsson
Segregation distortion is increasingly recognized as a potentially powerful evolutionary force. This runs counter to the perception that non-Mendelian genes are rare genetic curiosities, a view that seems to be supported by the near ubiquity of the Mendelian system of inheritance. There are several reasons why segregation distortion may be more important than is evidenced by known empirical examples. One possibility is that the types of segregation distorters we have found are only a subset of a broader range of non-Mendelian systems, many of which go undetected. In this paper, we review what is known about the sex-linked meiotic drive system in the plant, Silene latifolia, and present some data on the mechanism of segregation distortion. We outline the general features that segregation distorters in plants and animals have in common. In some cases, such as the paucity of systems that directly alter meiotic segregation, there are likely to be inherent constraints on the range of systems that can possibly occur. Other generalities, however, support the notion that many forms of meiotic drive are possible, and that the known examples of segregation distortion are likely to be only subset of those that can possibly occur. Non-Mendelian genes may therefore have greater evolutionary importance than their current abundance in nature would suggest.
New Phytologist | 2011
Pär K. Ingvarsson; Nathaniel R. Street
Association mapping is rapidly becoming the main method for dissecting the genetic architecture of complex traits in plants. Currently most association mapping studies in plants are preformed using sets of genes selected to be putative candidates for the trait of interest, but rapid developments in genomics will allow for genome-wide mapping in virtually any plant species in the near future. As the costs for genotyping are decreasing, the focus has shifted towards phenotyping. In plants, clonal replication and/or inbred lines allows for replicated phenotyping under many different environmental conditions. Reduced sequencing costs will increase the number of studies that use RNA sequencing data to perform expression quantitative trait locus (eQTL) mapping, which will increase our knowledge of how gene expression variation contributes to phenotypic variation. Current population sizes used in association mapping studies are modest in size and need to be greatly increased if mutations explaining less than a few per cent of the phenotypic variation are to be detected. Association mapping has started to yield insights into the genetic architecture of complex traits in plants, and future studies with greater genome coverage will help to elucidate how plants have managed to adapt to a wide variety of environmental conditions.
Genetics | 2006
Pär K. Ingvarsson; M. Victoria García; David Hall; Virginia Luquez; Stefan Jansson
The initiation of growth cessation and dormancy represents a critical ecological and evolutionary trade-off between survival and growth in most forest trees. The most important environmental cue regulating the initiation of dormancy is a shortening of the photoperiod and phytochrome genes have been implicated in short-day-induced bud set and growth cessation in Populus. We characterized patterns of DNA sequence variation at the putative candidate gene phyB2 in 4 populations of European aspen (Populus tremula) and scored single-nucleotide polymorphisms in an additional 12 populations collected along a latitudinal gradient in Sweden. We also measured bud set from a subset of these trees in a growth chamber experiment. Buds set showed significant clinal variation with latitude, explaining ∼90% of the population variation in bud set. A sliding-window scan of phyB2 identified six putative regions with enhanced population differentiation and four SNPs showed significant clinal variation. The clinal variation at individual SNPs is suggestive of an adaptive response in phyB2 to local photoperiodic conditions. Three of four SNPs showing clinal variation were located in regions with excessive genetic differentiation, demonstrating that searching for regions of high genetic differentiation can be useful for identifying sites putatively involved in local adaptation.
Genetics | 2008
Pär K. Ingvarsson; M. Victoria García; Virginia Luquez; David W. Hall; Stefan Jansson
We investigated the utility of association mapping to dissect the genetic basis of naturally occurring variation in bud phenology in European aspen (Populus tremula). With this aim, we surveyed nucleotide polymorphism in 13 fragments spanning an 80-kb region surrounding the phytochrome B2 (phyB2) locus. Although polymorphism varies substantially across the phyB2 region, we detected no signs for deviations from neutral expectations. We also identified a total of 41 single nucleotide polymorphisms (SNPs) that were subsequently scored in a mapping population consisting of 120 trees. We identified two nonsynonymous SNPs in the phytochrome B2 gene that were independently associated with variation in the timing of bud set and that explained between 1.5 and 5% of the observed phenotypic variation in bud set. Earlier studies have shown that the frequencies of both these SNPs vary clinally with latitude. Linkage disequilibrium across the region was low, suggesting that the SNPs we identified are strong candidates for being causally linked to variation in bud set in our mapping populations. One of the SNPs (T608N) is located in the “hinge region,” close to the chromophore binding site of the phyB2 protein. The other SNP (L1078P) is located in a region supposed to mediate downstream signaling from the phyB2 locus. The lack of population structure, combined with low levels of linkage disequilibrium, suggests that association mapping is a fruitful method for dissecting naturally occurring variation in Populus tremula.
Evolution | 2007
David Hall; Virginia Luquez; Victoria M. Garcia; Kate R. St Onge; Stefan Jansson; Pär K. Ingvarsson
Abstract A correct timing of growth cessation and dormancy induction represents a critical ecological and evolutionary trade-off between survival and growth in most forest trees (Rehfeldt et al. 1999; Horvath et al. 2003; Howe et al. 2003). We have studied the deciduous tree European Aspen (Populus tremula) across a latitudinal gradient and compared genetic differentiation in phenology traits with molecular markers. Trees from 12 different areas covering 10 latitudinal degrees were cloned and planted in two common gardens. Several phenology traits showed strong genetic differentiation and clinal variation across the latitudinal gradient, with QST values generally exceeding 0.5. This is in stark contrast to genetic differentiation at several classes of genetic markers (18 neutral SSRs, 7 SSRs located close to phenology candidate genes and 50 SNPs from five phenology candidate genes) that all showed FST values around 0.015. We thus find strong evidence for adaptive divergence in phenology traits across the latitudinal gradient. However, the strong population structure seen at the quantitative traits is not reflected in underlying candidate genes. This result fit theoretical expectations that suggest that genetic differentiation at candidate loci is better described by FST at neutral loci rather than by QST at the quantitative traits themselves.
Genetics | 2008
Pär K. Ingvarsson
I have studied nucleotide polymorphism and linkage disequilibrium using multilocus data from 77 fragments, with an average length of fragments of 550 bp, in the deciduous tree Populus tremula (Salicaceae). The frequency spectrum across loci showed a modest excess of mutations segregating at low frequency and a marked excess of high-frequency derived mutations at silent sites, relative to neutral expectations. These excesses were also seen at replacement sites, but were not so pronounced for high-frequency derived mutations. There was a marked excess of low-frequency mutations at replacement sites, likely indicating deleterious amino acid-changing mutations that segregate at low frequencies in P. tremula. I used approximate Bayesian computation (ABC) to evaluate a number of different demographic scenarios and to estimate parameters for the best-fitting model. The data were found to be consistent with a historical reduction in the effective population size of P. tremula through a bottleneck. The timing inferred for this bottleneck is largely consistent with geological data and with data from several other long-lived plant species. The results show that P. tremula harbors substantial levels of nucleotide polymorphism with the posterior mode of the scaled mutation rate, θ = 0.0177 across loci. The ABC analyses also provided an estimate of the scaled recombination rate that indicates that recombination rates in P. tremula are likely to be 2–10 times higher than the mutation rate. This study reinforces the notion that linkage disequilibrium is low and decays to negligible levels within a few hundred base pairs in P. tremula.
Evolution | 2002
Pär K. Ingvarsson
Abstract.— Partial self‐fertilization is common in higher plants. Mating system variation is known to have important consequences for how genetic variation is distributed within and among populations. Selfing is known to reduce effective population size, and inbreeding species are therefore expected to have lower levels of genetic variation than comparable out crossing taxa. However, several recent empirical studies have shown that reductions in genetic diversity within populations of inbreeding species are far greater than the expected reductions based on the reduced effective population size. Two different processes have been argued to cause these patterns, selective sweeps (or hitchhiking) and background selection. Both are expected to be most effective in reducing genetic variation in regions of low recombination rates. Selfing is known to reduce the effective recombination rate, and inbreeding taxa are thus thought to be particularly vulnerable to the effects of hitchhiking or background selection. Here I propose a third explanation for the lower‐than‐expected levels of genetic diversity within populations of selfing species; recurrent extinctions and recolonizations of local populations, also known as metapopulation dynamics. I show that selfing in a metapopulation setting can result in large reductions in genetic diversity within populations, far greater than expected based the lower effective population size inbreeding species is expected to have. The reason for this depends on an interaction between selfing and pollen migration.
Current Opinion in Plant Biology | 2008
David B. Neale; Pär K. Ingvarsson
High-throughput DNA sequencing and genotyping technologies have enabled a new generation of research in plant genetics where combined quantitative and population genetic approaches can be used to better understand the relationship between naturally occurring genotypic and phenotypic diversity. Forest trees are highly amenable to such studies because of their combined undomesticated and partially domesticated state. Forest geneticists are using association genetics to dissect complex adaptive traits and discover the underlying genes. In parallel, they are using resequencing of candidate genes and modern population genetics methods to discover genes under natural selection. This combined approach is identifying the most important genes that determine patterns of complex trait adaptation observed in many tree populations.