Parag Saxena
Defence Research and Development Establishment
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Parag Saxena.
Journal of Clinical Microbiology | 2005
Manmohan Parida; Kouhei Horioke; Hiroyuki Ishida; Paban Kumar Dash; Parag Saxena; Asha Mukul Jana; Ma Islam; Shingo Inoue; Norimitsu Hosaka; Kouichi Morita
ABSTRACT The development and validation of a one-step, real-time, and quantitative dengue virus serotype-specific reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay targeting the 3′ noncoding region for the rapid detection and differentiation of dengue virus serotypes are reported. The RT-LAMP assay is very simple and rapid, wherein the amplification can be obtained in 30 min under isothermal conditions at 63°C by employing a set of four serotype-specific primer mixtures through real-time monitoring in an inexpensive turbidimeter. The evaluation of the RT-LAMP assay for use for clinical diagnosis with a limited number of patient serum samples, confirmed to be infected with each serotype, revealed a higher sensitivity by picking up 100% samples as positive, whereas 87% and 81% of the samples were positive by reverse transcription-PCR and virus isolation, respectively. The sensitivity and specificity of the RT-LAMP assay for the detection of viral RNA in patient serum samples with reference to virus isolation were 100% and 93%, respectively. The optimal assay conditions with zero background and no cross-reaction with other closely related members of the Flavivirus family (Japanese encephalitis, West Nile, and St. Louis encephalitis viruses) as well as within the four serotypes of dengue virus were established. None of the serum samples from healthy individuals screened in this study showed any cross-reaction with the four dengue virus serotype-specific RT-LAMP assay primers. These findings demonstrate that RT-LAMP assay has the potential clinical application for detection and differentiation of dengue virus serotypes, especially in developing countries.
Journal of Clinical Microbiology | 2007
Manmohan Parida; S.R. Santhosh; Paban Kumar Dash; Nagesh K. Tripathi; V. Lakshmi; N. Mamidi; Ambuj Shrivastva; Nimesh Gupta; Parag Saxena; J. Pradeep Babu; P.V. Lakshmana Rao; Kouichi Morita
ABSTRACT The standardization and validation of a one-step, single-tube, accelerated, quantitative reverse transcription (RT) loop-mediated isothermal amplification (RT-LAMP) assay targeting the E1 gene for the rapid and real-time detection of Chikungunya virus (CHIKV) are reported. A linear relationship between the amount of template and time of positivity value over a range of 2 × 108 to 2 × 102 copies was obtained. The feasibility of CHIKV RT-LAMP for clinical diagnosis was validated with patient serum samples from an ongoing epidemic in Southern India. Optimal assay conditions with zero background were established for the detection of low levels of CHIKV in acute-phase patient serum samples. The comparative evaluation of the RT-LAMP assay with acute-phase patient serum samples demonstrated exceptionally higher sensitivity by correctly identifying 21 additional positive borderline cases that were missed by conventional RT-PCR (P < 0.0001) with a detection limit of 20 copies. The quantification of virus load in patient serum samples was also determined from the standard curve based on their time of positivity and was found to be in the range of 2 × 108 to 2 × 101 copies. In addition, the field applicability of the RT-LAMP assay was also demonstrated by standardizing SYBR Green I-based RT-LAMP wherein the amplification was carried out in a water bath at 63°C for 60 min, which was followed by monitoring gene amplification with the naked eye through color changes. These findings demonstrated that the RT-LAMP assay is a valuable tool for rapid, real-time detection as well as quantification of CHIKV in acute-phase serum samples without requiring any sophisticated equipment and has potential usefulness for clinical diagnosis and surveillance of CHIKV in developing countries.
Virology Journal | 2009
Himani Kukreti; Paban Kumar Dash; Manmohan Parida; Artee Chaudhary; Parag Saxena; Rs Rautela; Veena Mittal; Mala Chhabra; Dipesh Bhattacharya; Shiv Lal; P.V. Lakshmana Rao; Arvind Rai
BackgroundDengue virus type 1 (DENV-1) have been mostly circulating silently with dominant serotypes DENV-2 and DENV-3 in India. However recent times have marked an increase in DENV-1 circulation in yearly outbreaks. Many studies have not been carried out on this virus type, leaving a lacunae pertaining to the circulating genotypes, since its earliest report in India. In the present study, we sequenced CprM gene junction of 13 DENV-1 isolated from Delhi and Gwalior (North India) between 2001–2007 and one 1956 Vellore isolate as reference. For comparison, we retrieved 11 other Indian and 70 global reference sequences from NCBI database, making sure that Indian and global isolates from all decades are available for comparative analysis.ResultsThe region was found to be AT rich with no insertion or deletion. Majority of the nucleotide substitutions were silent, except 3 non-conservative amino acid changes (I → T, A → T and L → S at amino acid positions 59,114 and 155 respectively) in the Indian DENV-1 sequences, sequenced in this study. Except two 1997–98 Delhi isolates, which group in genotype I; all other Indian isolates group in genotype III. All Indian genotype III DENV-1 exhibited diversity among them, giving rise to at least 4 distinct lineages (India 1–4) showing proximity to isolates from diverse geographic locations.ConclusionThe extensive phylogenetic analysis revealed consistent existence of multiple lineages of DENV-1 genotype III during the last 5 decades in India.
Virology Journal | 2006
Paban Kumar Dash; Man Mohan Parida; Parag Saxena; Ajay Abhyankar; Cp Singh; Kn Tewari; Asha Mukul Jana; K. Sekhar; P.V. Lakshmana Rao
BackgroundDengue virus infection has recently taken endemic proportion in India implicating all the four known dengue serotypes. There was a major dengue outbreak in northern India including Delhi in October- December, 2003 and again in 2004. We have carried out a detailed investigation of the 2004 outbreak by Serosurveillance, RT-PCR, nested PCR, virus isolation and genotyping. We also report the molecular epidemiological investigation of these outbreaks.ResultsThe serological investigation of 162 suspected serum samples using an in-house dengue dipstick ELISA revealed 11%-IgM, 51%-IgG and 38%-both IgM and IgG antibody positivity. The RT-PCR analysis revealed presence of dengue RNA in 17 samples. Further subtyping and genotyping by nested PCR and nucleotide sequencing of C-prM gene junction revealed the association of subtype III of dengue virus type 3 in the outbreak.ConclusionThe sudden shifting and dominance of the dengue virus serotype-3 (subtype III) replacing the earlier circulating serotype-2 (subtype IV) is a point of major concern and may be attributed to increased incidence of DHF and DSS in India.
Emerging Infectious Diseases | 2006
Manmohan Parida; Paban Kumar Dash; Nagesh K. Tripathi; Ambuj; Santhosh Sannarangaiah; Parag Saxena; Surekha Agarwal; Ajay Kumar Sahni; Sanjay P. Singh; Arvind K. Rathi; Rakesh Bhargava; Ajay Abhyankar; Shailendra K. Verma; Putcha Venkata Lakshmana Rao; Krishnamurthy Sekhar
An outbreak of viral encephalitis occurred in Gorakhpur, India, from July through November 2005. The etiologic agent was confirmed to be Japanese encephalitis virus by analyzing 326 acute-phase clinical specimens for virus-specific antibodies and viral RNA and by virus isolation. Phylogenetic analysis showed that these isolates belonged to genogroup 3.
Journal of Clinical Microbiology | 2006
Manmohan Parida; S.R. Santhosh; Paban Kumar Dash; Nagesh K. Tripathi; Parag Saxena; S. Ambuj; Ajay Kumar Sahni; P.V. Lakshmana Rao; Kouichi Morita
ABSTRACT The standardization and validation of a one-step, single-tube accelerated quantitative reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay is reported for rapid and real-time detection of Japanese encephalitis virus (JEV). The RT-LAMP assay reported in this study is very simple and rapid; the amplification can be obtained in 30 min under isothermal conditions at 63°C by employing a set of six primers targeting the E gene of JEV. The RT-LAMP assay demonstrated exceptionally higher sensitivity compared to that of RT-PCR, with a detection limit of 0.1 PFU. The specificities of the selected primer sets were established by cross-reactivity studies with other closely related members of the JEV serocomplex as well as by evaluation of healthy human volunteers. The comparative evaluation of the RT-LAMP assay for clinical diagnosis with a limited number of patient cerebrospinal fluid samples revealed 85% concordance with conventional RT-PCR, with a sensitivity and a specificity of 100% and 86%, respectively. The concentration of virus in most of the clinical samples was 102 to 105 PFU/ml, as determined from the standard curve based on the time of positivity in the samples. In addition, the monitoring of gene amplification can also be visualized with the naked eye by using SYBR green I fluorescent dye. Thus, due to easy operation without a requirement of sophisticated equipment and skilled personnel, the RT-LAMP assay reported here is a valuable tool for the rapid and real-time detection of JEV not only by well-equipped laboratories but also by peripheral diagnostic laboratories with limited financial resources in developing countries.
Virology Journal | 2008
Parag Saxena; Paban Kumar Dash; S.R. Santhosh; Ambuj Shrivastava; Manmohan Parida; P.V. Lakshmana Rao
BackgroundDengue is emerging as a major public health concern in many parts of the world. The development of a one-step, single tube, rapid, and multiplex reverse transcription polymerase chain reaction (M-RT-PCR) for simultaneous detection and typing of dengue virus using serotype specific primers during acute phase of illness is reported.ResultsAn optimal assay condition with zero background was established having no cross-reaction with closely related members of flavivirus (Japanese encephalitis, West Nile, Yellow fever) and alphavirus (Chikungunya). The feasibility of M-RT-PCR assay for clinical diagnosis was validated with 620 acute phase dengue patient sera samples of recent epidemics in India. The comparative evaluation vis a vis conventional virus isolation revealed higher sensitivity. None of the forty healthy serum samples screened in the present study revealed any amplification, thereby establishing specificity of the reported assay for dengue virus only.ConclusionThese findings clearly suggested that M-RT-PCR assay reported in the present study is the rapid and cost-effective method for simultaneous detection as well as typing of the dengue virus in acute phase patient serum samples. Thus, the M-RT-PCR assay developed in this study will serve as a very useful tool for rapid diagnosis and typing of dengue infections in endemic areas.
Diagnostic Microbiology and Infectious Disease | 2008
Paban Kumar Dash; Manmohan Parida; S.R. Santhosh; Parag Saxena; Ambuj Srivastava; Mamidi Neeraja; Vemu Lakshmi; P.V. Lakshmana Rao
Dengue (DEN) and chikungunya (CHIK) have emerged as the 2 most important arboviral infections of global significance. The similarities in clinical presentations, their circulation in the same geographic area, and the transmission through the same vector necessitate an urgent need for the differential diagnosis of these 2 infections. So far, no single assay is reported for differential diagnosis of these 2 infections. In this study, we report the development and evaluation of a 1-step single-tube duplex reverse transcription polymerase chain reaction (D-RT-PCR) assay by targeting E1 gene of CHIK and C-prM gene junction of DEN virus (DENV), respectively. The sensitivity of this assay was found to be better than conventional virus isolation and could detect as low as 100 copies of genomic RNA, which is equivalent to respective virus-specific RT-PCR. The evaluation was carried out with 360 clinical samples from recent CHIK and DEN outbreaks in India. This assay could also be able to detect dual infection of CHIK and DEN in 3 patients. The phylogenetic analysis based on the nucleotide sequencing of D-RT-PCR amplicon could precisely identify the genotypes of all the serotypes of DENV and CHIK viruses (CHIKV). These findings demonstrate the potential clinical and epidemiologic application of D-RT-PCR for rapid sensitive detection, differentiation, and genotyping of DENV and CHIKV in clinical samples.
Biochemical Pharmacology | 2005
P.V. Lakshmana Rao; R. Jayaraj; A.S.B. Bhaskar; Om Kumar; Rahul Bhattacharya; Parag Saxena; Paban Kumar Dash; R. Vijayaraghavan
Vector-borne and Zoonotic Diseases | 2007
Paban Kumar Dash; Manmohan Parida; S.R. Santhosh; Shailendra Kumar Verma; Nagesh K. Tripathi; S. Ambuj; Parag Saxena; Nimesh Gupta; M. Chaudhary; J. Pradeep Babu; V. Lakshmi; N. Mamidi; M.V.S. Subhalaxmi; P.V. Lakshmana Rao; K. Sekhar