Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paraic A. Kenny is active.

Publication


Featured researches published by Paraic A. Kenny.


Molecular Oncology | 2007

The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression

Paraic A. Kenny; Genee Y. Lee; Connie A. Myers; Richard M. Neve; Jeremy R. Semeiks; Paul T. Spellman; Katrin Lorenz; Eva H. Lee; Mary Helen Barcellos-Hoff; Ole W. Petersen; Joe W. Gray; Mina J. Bissell

3D cell cultures are rapidly becoming the method of choice for the physiologically relevant modeling of many aspects of non‐malignant and malignant cell behavior ex vivo. Nevertheless, only a limited number of distinct cell types have been evaluated in this assay to date. Here we report the first large scale comparison of the transcriptional profiles and 3D cell culture phenotypes of a substantial panel of human breast cancer cell lines. Each cell line adopts a colony morphology of one of four main classes in 3D culture. These morphologies reflect, at least in part, the underlying gene expression profile and protein expression patterns of the cell lines, and distinct morphologies were also associated with tumor cell invasiveness and with cell lines originating from metastases. We further demonstrate that consistent differences in genes encoding signal transduction proteins emerge when even tumor cells are cultured in 3D microenvironments.


International Journal of Cancer | 2003

Tumor reversion: Correction of malignant behavior by microenvironmental cues†

Paraic A. Kenny; Mina J. Bissell

Cancer is characterized by unrestrained proliferation and loss of organization, a process that is intimately linked to, and controlled by, reciprocal signaling between the genetically altered tumor epithelium, the stroma, the components of the basement membrane and inflammatory mediators. Much work has been done to characterize the genetics of cancer cells. In this review, we describe the experiments that have been performed, which point to the significant role of the tissue microenvironment in the developmental regulation of normal and neoplastic cells. Using a variety of model systems, the works of a number of laboratories have converged on a hypothesis where the correction of 1 or 2 signaling defects can revert tumor cells to a normal phenotype, both in vivo and in culture, even when the tumor cells possess multiple genetic and epigenetic lesions. This paradigm has been successfully used to treat acute promyelocytic leukemia, and it remains the task of biomedical researchers to identify additional targets for the reversion of other human malignancies.


Journal of Cellular Biochemistry | 2007

Fibrosis and cancer: Do myofibroblasts come also from epithelial cells via EMT?

Derek C. Radisky; Paraic A. Kenny; Mina J. Bissell

Myofibroblasts produce and modify the extracellular matrix (ECM), secrete angiogenic and pro‐inflammatory factors, and stimulate epithelial cell proliferation and invasion. Myofibroblasts are normally induced transiently during wound healing, but inappropriate induction of myofibroblasts causes organ fibrosis, which greatly enhances the risk of subsequent cancer development. As myofibroblasts are also found in the reactive tumor stroma, the processes involved in their development and activation are an area of active investigation. Emerging evidence suggests that a major source of fibrosis‐ and tumor‐associated myofibroblasts is through transdifferentiation from non‐malignant epithelial or epithelial‐derived carcinoma cells through epithelial‐mesenchymal transition (EMT). This review will focus on the role of EMT in fibrosis, considered in the context of recent studies showing that exposure of epithelial cells to matrix metalloproteinases (MMPs) can lead to increased levels of cellular reactive oxygen species (ROS) that stimulate transdifferentiation to myofibroblast‐like cells. As deregulated MMP expression and increased cellular ROS are characteristic of both fibrosis and malignancy, these studies suggest that increased MMP expression may stimulate fibrosis, tumorigenesis, and tumor progression by inducing a specialized EMT in which epithelial cells transdifferentiate into activated myofibroblasts. This connection provides a new perspective on the development of the fibrosis and tumor microenvironments. J. Cell. Biochem. 101: 830–839, 2007.


Journal of Clinical Investigation | 2007

Targeting TACE-dependent EGFR ligand shedding in breast cancer

Paraic A. Kenny; Mina J. Bissell

The ability to proliferate independently of signals from other cell types is a fundamental characteristic of tumor cells. Using a 3D culture model of human breast cancer progression, we have delineated a protease-dependent autocrine loop that provides an oncogenic stimulus in the absence of proto-oncogene mutation. Targeting this protease, TNF-alpha-converting enzyme (TACE; also referred to as a disintegrin and metalloproteinase 17 [ADAM17]), with small molecular inhibitors or siRNAs reverted the malignant phenotype in a breast cancer cell line by preventing mobilization of 2 crucial growth factors, TGF-alpha and amphiregulin. We show that TACE-dependent ligand shedding was prevalent in a series of additional breast cancer cell lines and, in all cases examined, was amenable to inhibition. Using existing patient outcome data, we demonstrated a strong correlation between TACE and TGFA expression in human breast cancers that was predictive of poor prognosis. Tumors resulting from inappropriate activation of the EGFR were common in multiple tissues and were, for the most part, refractory to current targeted therapies. The data presented here delineate the molecular mechanism by which constitutive EGFR activity may be achieved in tumor progression without mutation of the EGFR itself or downstream pathway components and suggest that this important oncogenic pathway might usefully be targeted upstream of the receptor.


Cell | 2010

Store-Independent Activation of Orai1 by SPCA2 in Mammary Tumors

Mingye Feng; Desma Grice; Helen M. Faddy; Nguyen Nguyen; Sharon Leitch; Yingyu Wang; Sabina Muend; Paraic A. Kenny; Saraswati Sukumar; Sarah J. Roberts-Thomson; Gregory R. Monteith; Rajini Rao

Ca(2+) is an essential and ubiquitous second messenger. Changes in cytosolic Ca(2+) trigger events critical for tumorigenesis, such as cellular motility, proliferation, and apoptosis. We show that an isoform of Secretory Pathway Ca(2+)-ATPase, SPCA2, is upregulated in breast cancer-derived cells and human breast tumors, and suppression of SPCA2 attenuates basal Ca(2+) levels and tumorigenicity. Contrary to its conventional role in Golgi Ca(2+) sequestration, expression of SPCA2 increased Ca(2+) influx by a mechanism dependent on the store-operated Ca(2+) channel Orai1. Unexpectedly, SPCA2-Orai1 signaling was independent of ER Ca(2+) stores or STIM1 and STIM2 sensors and uncoupled from Ca(2+)-ATPase activity of SPCA2. Binding of the SPCA2 amino terminus to Orai1 enabled access of its carboxyl terminus to Orai1 and activation of Ca(2+) influx. Our findings reveal a signaling pathway in which the Orai1-SPCA2 complex elicits constitutive store-independent Ca(2+) signaling that promotes tumorigenesis.


Cancer Research | 2006

Gene expression signature in organized and growth-arrested mammary acini predicts good outcome in breast cancer.

Marcia V. Fournier; Katherine J. Martin; Paraic A. Kenny; Kris Xhaja; Irene Bosch; Paul Yaswen; Mina J. Bissell

Nonmalignant human mammary epithelial cells (HMEC) seeded in laminin-rich extracellular matrix (lrECM) form polarized acini and, in doing so, transit from a disorganized proliferating state to an organized growth-arrested state. We hypothesized that the gene expression pattern of organized and growth-arrested HMECs would share similarities with breast tumors with good prognoses. Using Affymetrix HG-U133A microarrays, we analyzed the expression of 22,283 gene transcripts in 184 (finite life span) and HMT3522 S1 (immortal nonmalignant) HMECs on successive days after seeding in a lrECM assay. Both HMECs underwent growth arrest in G0-G1 and differentiated into polarized acini between days 5 and 7. We identified gene expression changes with the same temporal pattern in both lines and examined the expression of these genes in a previously published panel of microarray data for 295 breast cancer samples. We show that genes that are significantly lower in the organized, growth-arrested HMEC than in their proliferating counterparts can be used to classify breast cancer patients into poor and good prognosis groups with high accuracy. This study represents a novel unsupervised approach to identifying breast cancer markers that may be of use clinically.


Molecular Cancer Therapeutics | 2011

ORAI1-Mediated Calcium Influx in Lactation and in Breast Cancer

D. McAndrew; Desma Grice; Amelia A. Peters; Felicity M. Davis; Teneale A. Stewart; Michelle Rice; Chanel E. Smart; Melissa A. Brown; Paraic A. Kenny; Sarah J. Roberts-Thomson; Gregory R. Monteith

The entry of calcium into the mammary epithelial cell from the maternal plasma (i.e., calcium influx mechanisms) during lactation is poorly understood. As alterations in calcium channels and pumps are a key feature of some cancers, including breast cancer, understanding these calcium influx pathways may have significance beyond mammary biology. We show that the store-operated calcium influx protein, Orai1, is increased during lactation whereas the Orai1 activator Stim1, but not Stim2, is downregulated. Stim2 siRNA reduced basal calcium levels in a lactation model. Our results suggest that calcium influx is remodeled in mammary epithelial cells during lactation, with calcium influx increased through Orai1, activated by Stim2. Breast cancer cell lines had increased levels of ORAI1. ORAI1 siRNA in breast cancer cells reduced store-operated calcium entry and remodeled the calcium influx associated with invasive stimuli. Analysis of microarray data from 295 breast cancers showed that the transcriptional breast cancer subtype with the poorest prognosis (basal) was associated with an altered relationship between the ORAI1 regulators STIM1 and STIM2, and that women with breast cancers with STIM1high/STIM2low tumors had a significantly poorer prognosis. Our studies show that during lactation there is a remodeling in the nature of calcium influx and that alteration in the ORAI1 influx pathway may be a feature of some breast cancers, particularly those with the poorest prognosis. Our studies suggest that this pathway may be a novel therapeutic target for breast cancer treatment in these women. Mol Cancer Ther; 10(3); 448–60. ©2011 AACR.


Breast Cancer Research | 2012

Selective gene-expression profiling of migratory tumor cells in vivo predicts clinical outcome in breast cancer patients

Antonia Patsialou; Yarong Wang; Juan Lin; Kathleen Whitney; Sumanta Goswami; Paraic A. Kenny; John Condeelis

IntroductionMetastasis of breast cancer is the main cause of death in patients. Previous genome-wide studies have identified gene-expression patterns correlated with cancer patient outcome. However, these were derived mostly from whole tissue without respect to cell heterogeneity. In reality, only a small subpopulation of invasive cells inside the primary tumor is responsible for escaping and initiating dissemination and metastasis. When whole tissue is used for molecular profiling, the expression pattern of these cells is masked by the majority of the noninvasive tumor cells. Therefore, little information is available about the crucial early steps of the metastatic cascade: migration, invasion, and entry of tumor cells into the systemic circulation.MethodsIn the past, we developed an in vivo invasion assay that can capture specifically the highly motile tumor cells in the act of migrating inside living tumors. Here, we used this assay in orthotopic xenografts of human MDA-MB-231 breast cancer cells to isolate selectively the migratory cell subpopulation of the primary tumor for gene-expression profiling. In this way, we derived a gene signature specific to breast cancer migration and invasion, which we call the Human Invasion Signature (HIS).ResultsUnsupervised analysis of the HIS shows that the most significant upregulated gene networks in the migratory breast tumor cells include genes regulating embryonic and tissue development, cellular movement, and DNA replication and repair. We confirmed that genes involved in these functions are upregulated in the migratory tumor cells with independent biological repeats. We also demonstrate that specific genes are functionally required for in vivo invasion and hematogenous dissemination in MDA-MB-231, as well as in patient-derived breast tumors. Finally, we used statistical analysis to show that the signature can significantly predict risk of breast cancer metastasis in large patient cohorts, independent of well-established prognostic parameters.ConclusionsOur data provide novel insights into, and reveal previously unknown mediators of, the metastatic steps of invasion and dissemination in human breast tumors in vivo. Because migration and invasion are the early steps of metastatic progression, the novel markers that we identified here might become valuable prognostic tools or therapeutic targets in breast cancer.


PLOS Computational Biology | 2010

Molecular Predictors of 3D Morphogenesis by Breast Cancer Cell Lines in 3D Culture

Ju Han; Hang Chang; Orsi Giricz; Genee Y. Lee; Frederick L. Baehner; Joe W. Gray; Mina J. Bissell; Paraic A. Kenny; Bahram Parvin

Correlative analysis of molecular markers with phenotypic signatures is the simplest model for hypothesis generation. In this paper, a panel of 24 breast cell lines was grown in 3D culture, their morphology was imaged through phase contrast microscopy, and computational methods were developed to segment and represent each colony at multiple dimensions. Subsequently, subpopulations from these morphological responses were identified through consensus clustering to reveal three clusters of round, grape-like, and stellate phenotypes. In some cases, cell lines with particular pathobiological phenotypes clustered together (e.g., ERBB2 amplified cell lines sharing the same morphometric properties as the grape-like phenotype). Next, associations with molecular features were realized through (i) differential analysis within each morphological cluster, and (ii) regression analysis across the entire panel of cell lines. In both cases, the dominant genes that are predictive of the morphological signatures were identified. Specifically, PPARγ has been associated with the invasive stellate morphological phenotype, which corresponds to triple-negative pathobiology. PPARγ has been validated through two supporting biological assays.


Biochemical and Biophysical Research Communications | 2008

Localization of plasma membrane and secretory calcium pumps in the mammary gland

Helen M. Faddy; Chanel E. Smart; Ren Xu; Genee Y. Lee; Paraic A. Kenny; Mingye Feng; Rajini Rao; Melissa A. Brown; Mina J. Bissell; Sarah J. Roberts-Thomson; Gregory R. Monteith

Until recently the mechanism for the enrichment of milk with calcium was thought to be almost entirely via the secretory pathway. However, recent studies suggest that a plasma membrane calcium ATPase, PMCA2, is the primary mechanism for calcium transport into milk, highlighting a major role for apical calcium transport. We compared the expression of the recently identified secretory calcium ATPase, SPCA2, and SPCA1, in the mouse mammary gland during development. SPCA2 levels increased over 35-fold during lactation with expression localized to luminal secretory cells, while SPCA1 increased only a modest 2-fold and was expressed throughout the cells of the mammary gland. We also observed major differences in the localization of PMCA2 and PMCA1. Our studies highlight the likely specific roles of PMCA2 and SPCA2 in lactation and indicate that calcium transport into milk is a complex interplay between apical and secretory pathways.

Collaboration


Dive into the Paraic A. Kenny's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mina J. Bissell

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Esther A. Peterson

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Orsi Giricz

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Desma Grice

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Helen M. Faddy

Australian Red Cross Blood Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natasha Chandiramani

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge