Paramdeep Bagga
Integral University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paramdeep Bagga.
BioMed Research International | 2014
Danish Iqbal; M. Salman Khan; Amir Khan; Mohd Sajid Khan; Saheem Ahmad; Ashwani Kr. Srivastava; Paramdeep Bagga
Hypercholesterolemia-induced oxidative stress has been strongly implicated in the pathogenesis of atherosclerosis, which is one of the major causes of mortality worldwide. The current work, for the first time, accounts the antioxidant, genoprotective, antilipoperoxidative, and HMG-CoA reductase (EC 1.1.1.34) inhibitory properties of traditional medicinal plant, Ficus palmata Forsk. Our result showed that among sequentially extracted fractions of Ficus palmata Forsk, FPBA (F. palmata bark aqueous extract) and FPLM (F. palmata leaves methanolic extract) extracts have higher phenolic content and also exhibited significantly more radical scavenging (DPPH and Superoxide) and antioxidant (FRAP) capacity. Moreover, FPBA extract also exhibited significantly higher inhibition of lipid peroxidation assay. Additionally, results showed almost complete and partial protection of oxidatively damaged DNA by these plant extracts when compared to mannitol. Furthermore, our results showed that FPBA extract (IC50 = 9.1 ± 0.61 µg/mL) exhibited noteworthy inhibition of HMG-CoA reductase activity as compared to other extracts, which might suggest its role as cardioprotective agent. In conclusion, results showed that FPBA extract not only possess significant antioxidant and genoprotective property but also is able to attenuate the enzymatic activity of HMG-CoA reductase, which might suggest its role in combating various oxidative stress-related diseases, including atherosclerosis.
Current Drug Delivery | 2017
Paramdeep Bagga; Hifazat Hussain Siddiqui; Juber Akhtar; Tariq Mahmood; Manaal Zahera; Mohd Sajid Khan
BACKGROUND Levofloxacin is a potent antibiotic with severe side effects due to its high doses. Bacterial resistance may be due to frequent use of antibiotics. Biogenic gold nanoparticles conjugated levofloxacin (Au-HSA-LvN-NPs) were developed by Human Serum Albumin (HSA) and nitrate reductasemediated pathways. METHODS Au-HSA-LvN-NPs (size = 27.2 ± 1 nm) were readily generated with high emulsion stability zeta potential (-13.3 mV). The developed nanoparticles were also characterized by UVvisible spectroscopy, Transmission Electron Microscopy and Dynamic Light Scattering techniques. RESULTS The optimized nanoparticles were found efficient against both Gram-positive bacteria and Gramnegative bacteria specifically S. aureus (MIC-0.373 µg/ml), E. coli (MIC-0.149 µg/ml) and P. aeruginosa (MIC-0.346 µg/ml) respectively. CONCLUSION The efficiency of bioconjugated levofloxacin got improved by 1.94 times, 2.89 times and 1.46 times against S. aureus, E. coli and P. aeruginosa respectively, in comparison to pure levofloxacin.
Integrative medicine research | 2016
Shoaib Shadab Iqbal; Md. Mujahid; Sayed Mohammad Kashif; Mohammad Khalid; Badruddeen; Muhammad Arif; Paramdeep Bagga; Juber Akhtar; Md. Azizur Rahman
Background Traditional systems of medicine use herbal drugs for hepatoprotection. Thus, the study was designed to evaluate the hepatoprotective and antioxidant effects of Spondias pinnata bark extracts against ethanol-induced liver injury in Wistar rats. Methods Group I animals were treated with 1 mL/kg 0.3% carboxymethyl cellulose and Group II with 12 mL/kg 50% ethanol for 8 consecutive days. Groups III–VII animals were first treated with 400 mg/kg petroleum ether extract, chloroform extract, acetone extract (AE), ethanol extract (EE), and 100 mg/kg silymarin, and then 12 mL/kg 50% ethanol orally after 2 hours pretreatment each day for 8 consecutive days. Six hours after the last dose, blood was withdrawn. The hepatoprotective activity was assessed by several biochemical and antioxidant parameters. It was accomplished by the histopathology and DNA fragmentation study of liver tissues. Results Treatment with S. pinnata extracts, mainly AE and EE significantly (p < 0.05–0.01) and dose-dependently prevented the ethanol-induced increase in serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase, cholesterol, bilirubin, and malondialdehyde, and decrease in reduced glutathione, catalase, superoxide dismutase, and albumin. They also attenuated the ethanol-induced DNA damage. Hepatoprotective potential of the extract was less than that of standard drug silymarin. Results of the study were well supported by the histopathological observations. Conclusion S. pinnata extracts AE and EE possess a potent hepatoprotective effect against ethanol-induced liver injury in Wistar rats, and protect them from hepatotoxicity by prevention of ethanol-induced oxidative stress, DNA-damage and altered biochemical markers.
Archive | 2018
Moniba Rahim; Syed Mohd. Danish Rizvi; Sana Iram; Salman Khan; Paramdeep Bagga; Mohd Sajid Khan
Abstract The existence and use of natural as well as artificial nanomaterials is widespread. This lead to concerns about their interaction with human cells. This chapter provides an overview that green synthesized nanomaterials having biomolecules on their surfaces will interact differently with human cells than nongreen nanomaterials. Depending on their surface molecules, they will interact differently with different organs and cells of human beings. Their internalization in the cells depends upon the cell types and cell receptors present on the cell surface. Due to biomolecules attached to their surfaces, these materials become highly biocompatible, soluble, nontoxic, site specific and highly stable in the human body. The applications of these nanomaterials also depend upon types of materials used in synthesizing, their surface coatings and subsequently, their mode of entry into the cells. These nanomaterials are having huge advantages over engineered nanomaterials.
Natural Product Research | 2018
Ambreen Shoaib; Rakesh Kumar Dixit; Badruddeen; Md. Azizur Rahman; Paramdeep Bagga; Sarjeel Kaleem; Sahabjada Siddiqui; Md. Arshad; Hefazat Hussain Siddiqui
Abstract HPLC validated hexane bark extract of Onosma echioides L. root (OE) was evaluated for cure of human diabetic neuropathy in human neuroblastoma cell line. HPLC analysis was performed. Human neuroblastoma cells were grouped into control, normal glucose, high glucose (HG) and HG plus different concentrations of OE extract (10, 25 and 50 μg/mL). MTT, DCFH-DA staining and nuclear condensation assays were performed on neuroblastoma cells to evaluate antiproliferative activity, ROS activity level and apoptotic effect of OE. HPLC analysis revealed the existence of maximum yield of shikonin in n-hexane extract of OE. Exposure with different concentrations of OE effectively decreased ROS level and apoptosis of cells and as a result improved the viability of cells in a dose dependent manner in response to HG-induced oxidative stress. Thus, OE possesses the property to cure human diabetic neuropathy and further can be clinically tested for its use in diabetic neuropathy.
Journal of basic and clinical physiology and pharmacology | 2018
Shaikh Zohra Meena; Md. Azizur Rahman; Paramdeep Bagga; Md. Mujahid
Abstract Background Development of drug-induced hepatic damage (DIHD) during chemotherapy is the most common reason for interruption in chemotherapy. This study evaluated the hepatoprotective activity of the ethanolic extract of Tamarindus indica stem bark (EETI) against the induced DIHD in Sprague Dawley rats. Methods The rats were divided into five groups (n=5). Group I, group III, group IV, and group V rats received 1 mL 1% carboxymethyl cellulose, EETI 100 mg/kg body weight (b.wt), EETI 200 mg/kg b.wt, and silymarin 100 mg/kg b.wt, respectively, orally once every day for 28 days. After 1 h–group II, group III, group IV, and group V rats were administered with isoniazid (INH) and rifampicin (RIF) 50 mg/kg b.wt each orally once every day for 28 days. Then, 24 h after the last dosing, blood was withdrawn from the rats and analyzed for liver specific enzymes and biochemical markers. They were examined for histopathology. Results Co-administration of INH and RIF in group II significantly increased alanine transaminase, aspartate transaminase, alkaline phosphatase, lactate dehydrogenase, serum bilirubin, and cholesterol levels while reduced the total protein and albumin levels compared to that of group I. EETI in group III and group IV rats significantly restored the liver specific enzymes and biochemical markers altered due to co-administration of INH and RIF to normal in a dose-dependent manner. EETI 200 mg/kg b.wt showed better protection to liver than EETI 100 mg/kg b.wt and was comparable to silymarin 100 mg/kg b.wt. It was well supported with histopathology of liver tissues. Conclusions EETI possesses hepatoprotective activity against DIHD in rats. It may have a substantial impact on developing clinical strategies to treat patients with hepatic damage.
Journal of Dietary Supplements | 2018
Reshu Tiwari; Mohd. Haris Siddiqui; Tarique Mahmood; Paramdeep Bagga; Farogh Ahsan; Arshiya Shamim
ABSTRACT Diabetic neuropathy is a chronic complication of diabetes mellitus affecting about 50% of patients. Its symptoms include decreased motility and severe pain in peripheral parts. The pathogenesis involved is an abnormality in blood vessels that supply the peripheral nerves, metabolic disorders such as myo-inositol depletion, and increased nonenzymatic glycation. Moreover, oxidative stress in neurons results in activation of multiple biochemical pathways, which results in the generation of free radicals. Apart from available marketed formulations, extensive research is being carried out on herbal-based natural products to control hyperglycemia and its associated complications. This review is focused to provide a summary on diabetic neuropathy covering its etiology, types, and existing work on herbal-based therapies, which include pure compounds isolated from plant materials, plant extracts, and Ayurvedic preparations.
Drug Research | 2017
Farogh Ahsan; Tarique Mahmood Ansari; Shazia Usmani; Paramdeep Bagga
Silks are naturally occurring polymers that have been used clinically as sutures for hundreds of years. Its so for obtained from insects or worms, silk consists of a filament core protein, termed fibroin, and a glue-like coating made up of sericin proteins. An important component of silk has an extended history of being discarded as a waste in the course of silk processing. The cost of sericin for tissue engineering is underestimated and its capability in using as regenerative remedy has simply began to be explored. Its variable amino acid composition and various functional groups confer upon it attractive bioactive proteins, which are particularly interesting for biomedical programs. Because of its antioxidant properties, moisturizing ability, and mitogenic effect on mammalian cells, sericin is beneficial in cell regeneration and tissue engineering. Research shows that keratinocytes and fibroblasts have brought about the improvement of sericin-primarily based biomaterials for skin tissue repair, in particular as wound dressings. Moreover, sericin may be used for bone tissue engineering due to its ability to set off nucleation of bone-like hydroxyapatite. Stable silk sericin biomaterials, as films, sponges, and hydrogels, are obtained by means of cross-linking, ethanol precipitation, or mixing with different polymers. Now a day, sericin may also be used for delivery of drugs due to its chemical reactivity and pH-responsiveness which facilitate the fabrication of nano and microparticles, hydrogels, and conjugated molecules, enhancing the bioactivity of drugs. In this review, we outlined the current headways from extraction of sericin till its physical properties and biomedical applications.
Cns & Neurological Disorders-drug Targets | 2014
Syed Mohd. Danish Rizvi; Shahnawaz Shakil; Deboshree Biswas; Shazi Shakil; Sibhghatulla Shaikh; Paramdeep Bagga; Mohammad A. Kamal
Journal of Traditional and Complementary Medicine | 2017
Janey Alam; Md. Mujahid; Badruddeen; Yasmeen Jahan; Paramdeep Bagga; Md. Azizur Rahman