Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Parameth Thiennimitr is active.

Publication


Featured researches published by Parameth Thiennimitr.


Nature | 2010

Gut inflammation provides a respiratory electron acceptor for Salmonella

Sebastian E. Winter; Parameth Thiennimitr; Maria G. Winter; Brian P. Butler; Douglas L. Huseby; Robert W. Crawford; Joseph M. Russell; Charles L. Bevins; L. Garry Adams; Renée M. Tsolis; John R. Roth; Andreas J. Bäumler

Salmonella enterica serotype Typhimurium (S. Typhimurium) causes acute gut inflammation by using its virulence factors to invade the intestinal epithelium and survive in mucosal macrophages. The inflammatory response enhances the transmission success of S. Typhimurium by promoting its outgrowth in the gut lumen through unknown mechanisms. Here we show that reactive oxygen species generated during inflammation react with endogenous, luminal sulphur compounds (thiosulphate) to form a new respiratory electron acceptor, tetrathionate. The genes conferring the ability to use tetrathionate as an electron acceptor produce a growth advantage for S. Typhimurium over the competing microbiota in the lumen of the inflamed gut. We conclude that S. Typhimurium virulence factors induce host-driven production of a new electron acceptor that allows the pathogen to use respiration to compete with fermenting gut microbes. Thus the ability to trigger intestinal inflammation is crucial for the biology of this diarrhoeal pathogen.


Science | 2013

Host-Derived Nitrate Boosts Growth of E. coli in the Inflamed Gut

Sebastian E. Winter; Maria G. Winter; Mariana N. Xavier; Parameth Thiennimitr; Victor Poon; A. Marijke Keestra; Richard C. Laughlin; Gabriel Gomez; Jing Wu; Sara D. Lawhon; Ina E. Popova; Sanjai J. Parikh; L. Garry Adams; Renée M. Tsolis; Valley Stewart; Andreas J. Bäumler

E. coli kNOws How to Win The harmonious existence among the various microbial inhabitants of the gut is critical for good health. However, inflammation from injury or inflammatory bowel disease, can disrupt this balance and lead to the outgrowth of particular bacteria. The outgrowth of members of the Enterobacteriaceae family, which includes Escherichia coli, is often observed. Because E. coli are facultative rather an obligate anaerobes, Winter et al. (p. 708) postulated that they may be able to use by-products of reactive oxygen and nitrogen species, which are produced during inflammation, for anaerobic respiration, thereby edging out other fermenting bacteria. Indeed, in two mouse models of colitis and in a model of intestinal injury, various E. coli strains were able to use host-derived nitrate as an energy source and outcompete mutant strains unable to do this. During inflammation, Escherichia coli uses nitrate respiration to gain a growth advantage over other gut bacteria. Changes in the microbial community structure are observed in individuals with intestinal inflammatory disorders. These changes are often characterized by a depletion of obligate anaerobic bacteria, whereas the relative abundance of facultative anaerobic Enterobacteriaceae increases. The mechanisms by which the host response shapes the microbial community structure, however, remain unknown. We show that nitrate generated as a by-product of the inflammatory response conferred a growth advantage to the commensal bacterium Escherichia coli in the large intestine of mice. Mice deficient in inducible nitric oxide synthase did not support the growth of E. coli by nitrate respiration, suggesting that the nitrate generated during inflammation was host-derived. Thus, the inflammatory host response selectively enhances the growth of commensal Enterobacteriaceae by generating electron acceptors for anaerobic respiration.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota

Parameth Thiennimitr; Sebastian E. Winter; Maria G. Winter; Mariana N. Xavier; Vladimir Tolstikov; Douglas L. Huseby; Torsten Sterzenbach; Renée M. Tsolis; John R. Roth; Andreas J. Bäumler

Conventional wisdom holds that microbes support their growth in vertebrate hosts by exploiting a large variety of nutrients. We show here that use of a specific nutrient (ethanolamine) confers a marked growth advantage on Salmonella enterica serovar Typhimurium (S. Typhimurium) in the lumen of the inflamed intestine. In the anaerobic environment of the gut, ethanolamine supports little or no growth by fermentation. However, S. Typhimurium is able to use this carbon source by inducing the gut to produce a respiratory electron acceptor (tetrathionate), which supports anaerobic growth on ethanolamine. The gut normally converts ambient hydrogen sulfide to thiosulfate, which it then oxidizes further to tetrathionate during inflammation. Evidence is provided that S. Typhimuriums growth advantage in an inflamed gut is because of its ability to respire ethanolamine, which is released from host tissue, but is not utilizable by competing bacteria. By inducing intestinal inflammation, S. Typhimurium sidesteps nutritional competition and gains the ability to use an abundant simple substrate, ethanolamine, which is provided by the host.


Infection and Immunity | 2009

Contribution of Flagellin Pattern Recognition to Intestinal Inflammation during Salmonella enterica Serotype Typhimurium Infection

Sebastian E. Winter; Parameth Thiennimitr; Sean Paul Nuccio; Takeshi Haneda; Maria G. Winter; R. Paul Wilson; Joseph M. Russell; Thomas Henry; Quynh T. Tran; Sara D. Lawhon; Gabriel Gomez; Charles L. Bevins; Holger Rüssmann; Denise M. Monack; L. Garry Adams; Andreas J. Bäumler

ABSTRACT Salmonella enterica serotype Typhimurium causes acute inflammatory diarrhea in humans. Flagella contribute to intestinal inflammation, but the mechanism remains unclear since most mutations abrogating pattern recognition of flagellin also prevent motility and reduce bacterial invasion. To determine the contribution of flagellin pattern recognition to the generation of innate immune responses, we compared in two animal models a nonmotile, but flagellin-expressing and -secreting serotype Typhimurium strain (flgK mutant) to a nonmotile, non-flagellin-expressing strain (flgK fliC fljB mutant). In vitro, caspase-1 can be activated by cytosolic delivery of flagellin, resulting in release of the interferon gamma inducing factor interleukin-18 (IL-18). Experiments with streptomycin-pretreated caspase-1-deficient mice suggested that induction of gamma interferon expression in the murine cecum early (12 h) after serotype Typhimurium infection was caspase-1 dependent but independent of flagellin pattern recognition. In addition, mRNA levels of the CXC chemokines macrophage inflammatory protein 2 and keratinocyte-derived chemokine were markedly increased early after serotype Typhimurium infection of streptomycin-pretreated wild-type mice regardless of flagellin expression. In contrast, in bovine ligated ileal loops, flagellin pattern recognition contributed to increased mRNA levels of macrophage inflammatory protein 3α and more fluid accumulation at 2 h after infection. Collectively, our data suggest that pattern recognition of flagellin contributes to early innate host responses in the bovine ileal mucosa but not in the murine cecal mucosa.


Current Opinion in Microbiology | 2012

Salmonella, the host and its microbiota

Parameth Thiennimitr; Sebastian E. Winter; Andreas J. Bäumler

The intestine is host to a diverse bacterial community whose structure, at the phylum level, is maintained through unknown mechanisms. Acute inflammation triggered by enteric pathogens, such as Salmonella enterica serotype Typhimurium (S. Typhimurium), is accompanied by changes in the bacterial community structure marked by an outgrowth of the pathogen. Recent studies show that S. Typhimurium can harness benefit from the host response to edge out the beneficial bacterial species that dominate in the healthy gut. The elucidation of how S. Typhimurium alters the bacterial community structure during gastroenteritis is beginning to provide insights into mechanisms that dictate the balance between the host and its microbiota.


Molecular Microbiology | 2009

The TviA auxiliary protein renders the Salmonella enterica serotype Typhi RcsB regulon responsive to changes in osmolarity

Sebastian E. Winter; Maria G. Winter; Parameth Thiennimitr; Valerie A. Gerriets; Sean Paul Nuccio; Holger Rüssmann; Andreas J. Bäumler

In response to osmolarity, Salmonella enterica serotype Typhi (S. Typhi) regulates genes required for Vi capsular antigen expression oppositely to those required for motility and invasion. Previous studies suggest that osmoregulation of motility, invasion and capsule expression is mediated through the RcsC/RcsD/RcsB phosphorelay system. Here we performed gene expression profiling and functional studies to determine the role of TviA, an auxiliary protein of the RcsB response regulator, in controlling virulence gene expression in S. Typhi. TviA repressed expression of genes encoding flagella and the invasion‐associated type III secretion system (T3SS‐1) through repression of the flagellar regulators flhDC and fliZ, resulting in reduced invasion, reduced motility and reduced expression of FliC. Both RcsB and TviA repressed expression of flhDC, but only TviA altered flhDC expression in response to osmolarity. Introduction of tviA into S. enterica serotype Typhimurium rendered flhDC transcription sensitive to changes in osmolarity. These data suggest that the auxiliary TviA protein integrates a new regulatory input into the RcsB regulon of S. Typhi, thereby altering expression of genes encoding flagella, the Vi antigen and T3SS‐1 in response to osmolarity.


PLOS Pathogens | 2017

Respiration of Microbiota-Derived 1,2-propanediol Drives Salmonella Expansion during Colitis.

Franziska Faber; Parameth Thiennimitr; Luisella Spiga; Mariana X. Byndloss; Yael Litvak; Sara D. Lawhon; Helene Andrews-Polymenis; Sebastian E. Winter; Andreas J. Bäumler

Intestinal inflammation caused by Salmonella enterica serovar Typhimurium increases the availability of electron acceptors that fuel a respiratory growth of the pathogen in the intestinal lumen. Here we show that one of the carbon sources driving this respiratory expansion in the mouse model is 1,2-propanediol, a microbial fermentation product. 1,2-propanediol utilization required intestinal inflammation induced by virulence factors of the pathogen. S. Typhimurium used both aerobic and anaerobic respiration to consume 1,2-propanediol and expand in the murine large intestine. 1,2-propanediol-utilization did not confer a benefit in germ-free mice, but the pdu genes conferred a fitness advantage upon S. Typhimurium in mice mono-associated with Bacteroides fragilis or Bacteroides thetaiotaomicron. Collectively, our data suggest that intestinal inflammation enables S. Typhimurium to sidestep nutritional competition by respiring a microbiota-derived fermentation product.


Environmental Microbiology Reports | 2011

Intestinal and chronic infections: Salmonella lifestyles in hostile environments

Andreas J. Bäumler; Sebastian E. Winter; Parameth Thiennimitr; Josep Casadesús

The main disease syndromes caused by Salmonella serovars in immunocompetent individuals are gastroenteritis and typhoid fever. These syndromes differ with regard to the host niches in which Salmonella serovars grow and survive to ensure their transmission. During gastroenteritis, non-typhoidal Salmonella serovars such as Salmonella enterica serovar Typhimurium (S. Typhimurium) use their virulence factors to elicit acute intestinal inflammation, thereby creating a novel luminal niche. Reactive oxygen species produced by phagocytes in the intestinal lumen oxidize endogenous sulfur compounds to produce a new respiratory electron acceptor, tetrathionate. Respiration of tetrathionate confers a growth advantage to S. Typhimurium over competing microbes. This growth advantage ensures transmission of the pathogen by the faecal-oral route. In typhoid fever, S. enterica serovar Typhi (S. Typhi) establishes a chronic infection in the gall bladder, and perhaps in additional niches. Studies using the mouse model of typhoid fever suggest that survival and proliferation in the gall bladder may involve several strategies. Invasion of the gallbladder epithelium and formation of biofilms on gallstones may protect the pathogen from the bactericidal activities of bile salts. In the gallbladder lumen, activation of bile defence responses may permit survival of planktonic Salmonella cells. Individuals developing chronic carriage after an episode of typhoid fever can transmit the disease for the remainder of their lives by shedding the pathogen through the cystic duct. Shedding promotes S. Typhi transmission to new susceptible hosts. Here we review Salmonella virulence strategies for growth and survival in host niches that represent reservoirs for transmission.


Metabolic Brain Disease | 2017

Diet, gut microbiota and cognition.

Cicely Proctor; Parameth Thiennimitr; Nipon Chattipakorn; Siriporn C. Chattipakorn

The consumption of a diet high in fat and sugar can lead to the development of obesity, type 2 diabetes mellitus (T2DM), cardiovascular disease and cognitive decline. In the human gut, the trillions of harmless microorganisms harboured in the host’s gastrointestinal tract are called the ‘gut microbiota’. Consumption of a diet high in fat and sugar changes the healthy microbiota composition which leads to an imbalanced microbial population in the gut, a phenomenon known as “gut dysbiosis”. It has been shown that certain types of gut microbiota are linked to the pathogenesis of obesity. In addition, long-term consumption of a high fat diet is associated with cognitive decline. It has recently been proposed that the gut microbiota is part of a mechanistic link between the consumption of a high fat diet and the impaired cognition of an individual, termed “microbiota-gut-brain axis”. In this complex relationship between the gut, the brain and the gut microbiota, there are several types of gut microbiota and host mechanisms involved. Most of these mechanisms are still poorly understood. Therefore, this review comprehensively summarizes the current evidence from mainly in vivo (rodent and human) studies of the relationship between diet, gut microbiota and cognition. The possible mechanisms that the diet and the gut microbiota have on cognition are also presented and discussed.


Nutrition | 2018

Lactobacillus paracasei HII01, xylooligosaccharides, and synbiotics reduce gut disturbance in obese rats

Parameth Thiennimitr; Sakawdaurn Yasom; Wannipa Tunapong; Titikorn Chunchai; Keerati Wanchai; Anchalee Pongchaidecha; Anusorn Lungkaphin; Sasithorn Sirilun; Chaiyavat Chaiyasut; Nipon Chattipakorn; Siriporn C. Chattipakorn

OBJECTIVES The beneficial effects of pro-, pre-, and synbiotics on obesity with insulin resistance have been reported previously. However, the strain-specific effect of probiotics and the combination with various types of prebiotic fiber yield controversial outcomes and limit clinical applications. Our previous study demonstrated that the probiotic Lactobacillus paracasei (L. paracasei) HII01, prebiotic xylooligosaccharide (XOS), and synbiotics share similar efficacy in attenuating cardiac mitochondrial dysfunction in obese-insulin resistant rats. Nonetheless, the roles of HII01 and XOS on gut dysbiosis and gut inflammation under obese-insulin resistant conditions have not yet, to our knowledge, been investigated. Our hypothesis was that pro-, pre-, and synbiotics improve the metabolic parameters in obese-insulin resistant rats by reducing gut dysbiosis and gut inflammation. METHODS Male Wistar rats were fed with either a normal or high-fat diet that contained 19.77% and 59.28% energy from fat, respectively, for 12 wk. Then, the high-fat diet rats were fed daily with a 108 colony forming unit of the probiotic HII01, 10% prebiotic XOS, and synbiotics for 12 wk. The metabolic parameters, serum lipopolysaccharide levels, fecal Firmicutes/Bacteroidetes ratios, levels of Enterobacteriaceae, Bifidobacteria, and gut proinflammatory cytokine gene expression were quantified. RESULTS The consumption of probiotic L. paracasei HII01, prebiotic XOS, and synbiotics for 12 wk led to a decrease in metabolic endotoxemia, gut dysbiosis (a reduction in the Firmicutes/Bacteroidetes ratio and Enterobacteriaceae), and gut inflammation in obese-insulin resistant rats. CONCLUSIONS Pro-, pre-, and synbiotics reduced gut dysbiosis and gut inflammation, which lead to improvements in metabolic dysfunction in obese-insulin resistant rats.

Collaboration


Dive into the Parameth Thiennimitr's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sebastian E. Winter

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge