Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paramita Chakrabarty is active.

Publication


Featured researches published by Paramita Chakrabarty.


Neuron | 2015

IL-10 Alters Immunoproteostasis in APP Mice, Increasing Plaque Burden and Worsening Cognitive Behavior

Paramita Chakrabarty; Andrew Li; Carolina Ceballos-Diaz; James A. Eddy; Cory C. Funk; Brenda D. Moore; Nadia DiNunno; Awilda M. Rosario; Pedro E. Cruz; Christophe Verbeeck; Amanda N. Sacino; Sarah Nix; Christopher Janus; Nathan D. Price; Pritam Das; Todd E. Golde

Anti-inflammatory strategies are proposed to have beneficial effects in Alzheimers disease. To explore how anti-inflammatory cytokine signaling affects Aβ pathology, we investigated the effects of adeno-associated virus (AAV2/1)-mediated expression of Interleukin (IL)-10 in the brains of APP transgenic mouse models. IL-10 expression resulted in increased Aβ accumulation and impaired memory in APP mice. A focused transcriptome analysis revealed changes consistent with enhanced IL-10 signaling and increased ApoE expression in IL-10-expressing APP mice. ApoE protein was selectively increased in the plaque-associated insoluble cellular fraction, likely because of direct interaction with aggregated Aβ in the IL-10-expressing APP mice. Ex vivo studies also show that IL-10 and ApoE can individually impair glial Aβ phagocytosis. Our observations that IL-10 has an unexpected negative effect on Aβ proteostasis and cognition in APP mouse models demonstrate the complex interplay between innate immunity and proteostasis in neurodegenerative diseases, an interaction we call immunoproteostasis.


American Journal of Pathology | 2004

Cyclin-Dependent Kinase Inhibitors Attenuate Protein Hyperphosphorylation, Cytoskeletal Lesion Formation, and Motor Defects in Niemann-Pick Type C Mice

Min Zhang; Jin Li; Paramita Chakrabarty; Bitao Bu; Inez Vincent

Dysregulation of cyclin-dependent kinases (cdks) and cytoskeletal protein hyperphosphorylation characterizes a subset of human neurodegenerative diseases, including Alzheimers disease, amyotrophic lateral sclerosis, and Niemann-Pick Type C (NPC). It is thought that these cytoskeletal changes lead eventually to development of hallmark cytoskeletal lesions such as neurofibrillary tangles and axonal spheroids. Although many studies support an involvement of cdks in these neurodegenerative cascades, it is not known whether cdk activity is essential. The naturally occurring npc-1 mutant mouse mimics human NPC, in displaying activation of cdk5, mitotic cdc2, and cdk4, with concomitant cytoskeletal pathology and neurodegeneration. We availed of this model and specific pharmacological inhibitors of cdk activity, to determine whether cdks are necessary for NPC neuropathology. The inhibitors were infused intracerebroventricularly for a 2-week period, initiated at a pathologically incipient stage. While an inactive stereoisomer, iso-olomoucine, was ineffective, two potent inhibitors, roscovitine and olomoucine, attenuated significantly the hyperphosphorylation of neurofilament, tau, and mitotic proteins, reduced the number of spheroids, modulated Purkinje neuron death, and ameliorated motor defects in npc mice. These results suggest that cdk activity is required for neuropathology and subsequent motor impairment in NPC. Studies aimed at knocking down individual cdks in these mice will help identify the specific cdk(s) that are essential, and delineate their precise roles in the neurodegenerative process.


Alzheimer's Research & Therapy | 2012

Overlapping profiles of Aβ peptides in the Alzheimer's disease and pathological aging brains

Brenda D. Moore; Paramita Chakrabarty; Yona Levites; Thomas Kukar; Ann-Marie T. Baine; Tina Moroni; Thomas B. Ladd; Pritam Das; Dennis W. Dickson; Todd E. Golde

IntroductionA hallmark of Alzheimers disease (AD) is the presence of senile plaques composed of aggregated amyloid β (Aβ) peptides. Pathological aging (PA) is a postmortem classification that has been used to describe brains with plaque pathology similar in extent to AD, minimal cortical tau pathology, and no accompanying history of cognitive decline in the brain donor prior to death. PA may represent either a prodromal phase of AD, a benign form of Aβ accumulation, or inherent individual resistance to the toxic effects of Aβ accumulation. To attempt to distinguish between these possibilities we have systematically characterized Aβ peptides in a postmortem series of PA, AD and non-demented control (NDC) brains.MethodsAβ was sequentially extracted with tris buffered saline (TBS), radioimmunoprecipitation buffer (RIPA), 2% sodium dodecyl sulfate (SDS) and 70% formic acid (FA) from the pre-frontal cortex of 16 AD, eight PA, and six NDC patients. These extracts were analyzed by 1) a panel of Aβ sandwich ELISAs, 2) immunoprecipitation followed by mass spectrometry (IP/MS) and 3) western blotting. These studies enabled us to asses Aβ levels and solubility, peptide profiles and oligomeric assemblies.ResultsIn almost all extracts (TBS, RIPA, 2% SDS and 70% FA) the average levels of Aβ1-40, Aβ1-42, Aβ total, and Aβx-42 were greatest in AD. On average, levels were slightly lower in PA, and there was extensive overlap between Aβ levels in individual PA and AD cases. The profiles of Aβ peptides detected using IP/MS techniques also showed extensive similarity between the PA and AD brain extracts. In select AD brain extracts, we detected more amino-terminally truncated Aβ peptides compared to PA patients, but these peptides represented a minor portion of the Aβ observed. No consistent differences in the Aβ assemblies were observed by western blotting in the PA and AD groups.ConclusionsWe found extensive overlap with only subtle quantitative differences between Aβ levels, peptide profiles, solubility, and SDS-stable oligomeric assemblies in the PA and AD brains. These cross-sectional data indicate that Aβ accumulation in PA and AD is remarkably similar. Such data would be consistent with PA representing a prodromal stage of AD or a resistance to the toxic effects of Aβ.


Molecular Neurodegeneration | 2011

Hippocampal expression of murine TNFα results in attenuation of amyloid deposition in vivo

Paramita Chakrabarty; Amanda Herring; Carolina Ceballos-Diaz; Pritam Das; Todd E. Golde

Fibrillar amyloid β (fAβ) peptide is the major component of Aβ plaques in the brains of Alzheimers disease (AD) patients. Inflammatory mediators have previously been proposed to be drivers of Aβ pathology in AD patients by increasing amyloidogenic processing of APP and promoting Aβ accumulation, but recent data have shown that expression of various inflammatory cytokines attenuates Aβ pathology in mouse models. In an effort to further study the role of different inflammatory cytokines on Aβ pathology in vivo, we explored the effect of murine Tumor Necrosis Factor α (mTNFα) in regulating Aβ accumulation. Recombinant adeno-associated virus serotype 1 (AAV2/1) mediated expression of mTNFα in the hippocampus of 4 month old APP transgenic TgCRND8 mice resulted in significant reduction in hippocampal Aβ burden. No changes in APP levels or APP processing were observed in either mTNFα expressing APP transgenic mice or in non-transgenic littermates. Analysis of Aβ plaque burden in mTNFα expressing mice showed that even after substantial reduction compared to EGFP expressing age-matched controls, the Aβ plaque burden levels of the former do not decrease to the levels of 4 month old unmanipulated mice. Taken together, our data suggests that proinflammatory cytokine expression induced robust glial activation can attenuate plaque deposition. Whether such an enhanced microglial response actually clears preexisting deposits without causing bystander neurotoxicity remains an open question.


The Journal of Neuroscience | 2007

Conditional Neuronal Simian Virus 40 T Antigen Expression Induces Alzheimer-Like Tau and Amyloid Pathology in Mice

Kevin H.J. Park; Janice L. Hallows; Paramita Chakrabarty; Peter J. A. Davies; Inez Vincent

A large body of evidence has shown the activation of a cohort of cell cycle regulators and the duplication of DNA in degenerating neurons of Alzheimers disease (AD) brain. Activation of these regulators and duplication of chromosomes precede neurodegeneration and formation of neurofibrillary tangles (NFTs), one of the diagnostic lesions of AD. These findings, in combination with evidence for cell cycle regulation of amyloid precursor protein and tau, has led to the hypothesis that reentry into the cell cycle underlies AD pathogenesis. To test this hypothesis directly, we have created transgenic mice with forced cell cycle activation in postmitotic neurons via conditional expression of the simian virus 40 large T antigen (TAg) oncogene. We show that TAg mice recapitulate the cell cycle changes seen in AD and display a neurodegenerative phenotype accompanied by tau pathology and NFT-like profiles. Moreover, plaque-like amyloid deposits, similar to those seen in AD, are also observed in the brains of TAg mice. These data provide support for an essential role of ectopic cell cycle activation in the generation of the characteristic pathological hallmarks of AD. Furthermore, our TAg mice are the first model to develop NFTs and amyloid pathology simultaneously and in the absence of any human transgenes. These mice will be useful for further defining the nongenetic mechanisms in AD pathogenesis and for the development of cell cycle-based therapies for AD.


Molecular Neurodegeneration | 2012

Hippocampal expression of murine IL-4 results in exacerbation of amyloid deposition

Paramita Chakrabarty; Li Tianbai; Amanda Herring; Carolina Ceballos-Diaz; Pritam Das; Todd E. Golde

BackgroundPro-inflammatory stimuli, including cytokines like Interleukin-1β, Interleukin-6 and Interferon-γ, in the brain have been proposed to exacerbate existing Alzheimer’s disease (AD) neuropathology by increasing amyloidogenic processing of APP and promoting further Aβ accumulation in AD. On the other hand, anti-inflammatory cytokines have been suggested to be neuroprotective by reducing neuroinflammation and clearing Aβ. To test this hypothesis, we used adeno-associated virus serotype 1 (AAV2/1) to express an anti-inflammatory cytokine, murine Interleukin-4 (mIL-4), in the hippocampus of APP transgenic TgCRND8 mice with pre-existing plaques.ResultsmIL-4 expression resulted in establishment of an “M2-like” phenotype in the brain and was accompanied by exacerbated Aβ deposition in TgCRND8 mice brains. No change in holo APP or APP C terminal fragment or phosphorylated tau levels were detected in mIL-4 expressing CRND8 cohorts. Biochemical analysis shows increases in both SDS soluble and insoluble Aβ. mIL-4 treatment attenuates soluble Aβ40 uptake by microglia but does not affect aggregated Aβ42 internalization by microglia or soluble Aβ40 internalization by astrocytes.ConclusionsShort term focal mIL-4 expression in the hippocampus leads to exacerbation of amyloid deposition in vivo, possibly mediated by acute suppression of glial clearance mechanisms. Given that recent preclinical data from independent groups indicate engagement of the innate immune system early on during disease pathogenesis may be beneficial, our present study strongly argues for a cautious re-examination of unwarranted side–effects of anti-inflammatory therapies for neurodegenerative diseases, including AD.


PLOS ONE | 2013

Capsid serotype and timing of injection determines AAV transduction in the neonatal mice brain.

Paramita Chakrabarty; Awilda M. Rosario; Pedro E. Cruz; Zoe Siemienski; Carolina Ceballos-Diaz; Keith Crosby; Karen Jansen; David R. Borchelt; Ji-Yoen Kim; Joanna L. Jankowsky; Todd E. Golde; Yona Levites

Adeno-associated virus (AAV) mediated gene expression is a powerful tool for gene therapy and preclinical studies. A comprehensive analysis of CNS cell type tropism, expression levels and biodistribution of different capsid serotypes has not yet been undertaken in neonatal rodents. Our previous studies show that intracerebroventricular injection with AAV2/1 on neonatal day P0 results in widespread CNS expression but the biodistribution is limited if injected beyond neonatal day P1. To extend these observations we explored the effect of timing of injection on tropism and biodistribution of six commonly used pseudotyped AAVs delivered in the cerebral ventricles of neonatal mice. We demonstrate that AAV2/8 and 2/9 resulted in the most widespread biodistribution in the brain. Most serotypes showed varying biodistribution depending on the day of injection. Injection on neonatal day P0 resulted in mostly neuronal transduction, whereas administration in later periods of development (24–84 hours postnatal) resulted in more non-neuronal transduction. AAV2/5 showed widespread transduction of astrocytes irrespective of the time of injection. None of the serotypes tested showed any microglial transduction. This study demonstrates that both capsid serotype and timing of injection influence the regional and cell-type distribution of AAV in neonatal rodents, and emphasizes the utility of pseudotyped AAV vectors for translational gene therapy paradigms.


Nature Neuroscience | 2011

Interferon-γ induces progressive nigrostriatal degeneration and basal ganglia calcification

Paramita Chakrabarty; Carolina Ceballos-Diaz; Wen Lang Lin; Amanda Beccard; Karen Jansen-West; Nikolaus R. McFarland; Christopher Janus; Dennis W. Dickson; Pritam Das; Todd E. Golde

We found that CNS-directed expression of interferon-γ (IFN-γ) resulted in basal ganglia calcification, reminiscent of human idiopathic basal ganglia calcification (IBGC), and nigrostriatal degeneration. Our results indicate that IFN-γ mediates age-progressive nigrostriatal degeneration in the absence of exogenous stressors. Further study of this model may provide insight into selective nigrostriatal degeneration in human IBGC and other Parkinson syndromes.


Neuron | 2015

Appoptosin-Mediated Caspase Cleavage of Tau Contributes to Progressive Supranuclear Palsy Pathogenesis

Yingjun Zhao; I-Chu Tseng; Charles J. Heyser; Edward Rockenstein; Michael Mante; Anthony Adame; Qiuyang Zheng; Timothy Y. Huang; Xin Wang; Pharhad E. Arslan; Paramita Chakrabarty; Chengbiao Wu; Guojun Bu; William C. Mobley; Yun-wu Zhang; Peter St George-Hyslop; Eliezer Masliah; Paul E. Fraser; Huaxi Xu

Progressive supranuclear palsy (PSP) is a movement disorder characterized by tau neuropathology where the underlying mechanism is unknown. An SNP (rs1768208 C/T) has been identified as a strong risk factor for PSP. Here, we identified a much higher T-allele occurrence and increased levels of the pro-apoptotic protein appoptosin in PSP patients. Elevations in appoptosin correlate with activated caspase-3 and caspase-cleaved tau levels. Appoptosin overexpression increased caspase-mediated tau cleavage, tau aggregation, and synaptic dysfunction, whereas appoptosin deficiency reduced tau cleavage and aggregation. Appoptosin transduction impaired multiple motor functions and exacerbated neuropathology in tau-transgenic mice in a manner dependent on caspase-3 and tau. Increased appoptosin and caspase-3-cleaved tau were also observed in brain samples of patients with Alzheimers disease and frontotemporal dementia with tau inclusions. Our findings reveal a novel role for appoptosin in neurological disorders with tau neuropathology, linking caspase-3-mediated tau cleavage to synaptic dysfunction and behavioral/motor defects.


Molecular Neurodegeneration | 2013

Normal cognition in transgenic BRI2-Aβ mice.

Jungsu Kim; Paramita Chakrabarty; Amanda Hanna; Amelia March; Dennis W. Dickson; David R. Borchelt; Todd E. Golde; Christopher Janus

BackgroundRecent research in Alzheimer’s disease (AD) field has been focused on the potential role of the amyloid-β protein that is derived from the transmembrane amyloid precursor protein (APP) in directly mediating cognitive impairment in AD. Transgenic mouse models overexpressing APP develop robust AD-like amyloid pathology in the brain and show various levels of cognitive decline. In the present study, we examined the cognition of the BRI2-Aβ transgenic mouse model in which secreted extracellular Aβ1-40, Aβ1-42 or both Aβ1-40/Aβ1-42 peptides are generated from the BRI-Aβ fusion proteins encoded by the transgenes. BRI2-Aβ mice produce high levels of Aβ peptides and BRI2-Aβ1-42 mice develop amyloid pathology that is similar to the pathology observed in mutant human APP transgenic models.ResultsUsing established behavioral tests that reveal deficits in APP transgenic models, BRI2-Aβ1-42 mice showed completely intact cognitive performance at ages both pre and post amyloid plaque formation. BRI2-Aβ mice producing Aβ1-40 or both peptides were also cognitively intact.ConclusionsThese data indicate that high levels of Aβ1-40 or Aβ1-42, or both produced in the absence of APP overexpression do not reproduce memory deficits observed in APP transgenic mouse models. This outcome is supportive of recent data suggesting that APP processing derivatives or the overexpression of full length APP may contribute to cognitive decline in APP transgenic mouse models. Alternatively, Aβ aggregates may impact cognition by a mechanism that is not fully recapitulated in these BRI2-Aβ mouse models.

Collaboration


Dive into the Paramita Chakrabarty's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge