Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paras K. Anand is active.

Publication


Featured researches published by Paras K. Anand.


Cancer Cell | 2011

The NOD-Like Receptor NLRP12 Attenuates Colon Inflammation and Tumorigenesis

Md. Hasan Zaki; Peter Vogel; R. K. Subbarao Malireddi; Mathilde Body-Malapel; Paras K. Anand; John Bertin; Douglas R. Green; Mohamed Lamkanfi; Thirumala-Devi Kanneganti

NLRP12 is a member of the intracellular Nod-like receptor (NLR) family that has been suggested to downregulate the production of inflammatory cytokines, but its physiological role in regulating inflammation has not been characterized. We analyzed mice deficient in Nlrp12 to study its role in inflammatory diseases such as colitis and colorectal tumorigenesis. We show that Nlrp12-deficient mice are highly susceptible to colon inflammation and tumorigenesis, which is associated with increased production of inflammatory cytokines, chemokines, and tumorigenic factors. Enhanced colon inflammation and colorectal tumor development in Nlrp12-deficient mice are due to a failure to dampen NF-κB and ERK activation in macrophages. These results reveal a critical role for NLRP12 in maintaining intestinal homeostasis and providing protection against colorectal tumorigenesis.


Nature | 2012

NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens

Paras K. Anand; R. K. S. Malireddi; Lukens; Peter Vogel; John Bertin; Mohamed Lamkanfi; Thirumala-Devi Kanneganti

Members of the intracellular nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) family contribute to immune responses through activation of nuclear factor-κB (NF-κB), type I interferon and inflammasome signalling. Mice lacking the NLR family member NLRP6 were recently shown to be susceptible to colitis and colorectal tumorigenesis, but the role of NLRP6 in microbial infections and the nature of the inflammatory signalling pathways regulated by NLRP6 remain unclear. Here we show that Nlrp6-deficient mice are highly resistant to infection with the bacterial pathogens Listeria monocytogenes, Salmonella typhimurium and Escherichia coli. Infected Nlrp6-deficient mice had increased numbers of monocytes and neutrophils in circulation, and NLRP6 signalling in both haematopoietic and radioresistant cells contributed to increased susceptibility. Nlrp6 deficiency enhanced activation of mitogen-activated protein kinase (MAPK) and the canonical NF-κB pathway after Toll-like receptor ligation, but not cytosolic NOD1/2 ligation, in vitro. Consequently, infected Nlrp6-deficient cells produced increased levels of NF-κB- and MAPK-dependent cytokines and chemokines. Thus, our results reveal NLRP6 as a negative regulator of inflammatory signalling, and demonstrate a role for this NLR in impeding clearance of both Gram-positive and -negative bacterial pathogens.


Journal of Immunology | 2014

FADD and Caspase-8 Mediate Priming and Activation of the Canonical and Noncanonical Nlrp3 Inflammasomes

Prajwal Gurung; Paras K. Anand; R. K. Subbarao Malireddi; Lieselotte Vande Walle; Nina Van Opdenbosch; Christopher P. Dillon; Ricardo Weinlich; Douglas R. Green; Mohamed Lamkanfi; Thirumala-Devi Kanneganti

The Nlrp3 inflammasome is critical for host immunity, but the mechanisms controlling its activation are enigmatic. In this study, we show that loss of FADD or caspase-8 in a RIP3-deficient background, but not RIP3 deficiency alone, hampered transcriptional priming and posttranslational activation of the canonical and noncanonical Nlrp3 inflammasome. Deletion of caspase-8 in the presence or absence of RIP3 inhibited caspase-1 and caspase-11 activation by Nlrp3 stimuli but not the Nlrc4 inflammasome. In addition, FADD deletion prevented caspase-8 maturation, positioning FADD upstream of caspase-8. Consequently, FADD- and caspase-8–deficient mice had impaired IL-1β production when challenged with LPS or infected with the enteropathogen Citrobacter rodentium. Thus, our results reveal FADD and caspase-8 as apical mediators of canonical and noncanonical Nlrp3 inflammasome priming and activation.


Nature Immunology | 2013

Receptor interacting protein kinase 2–mediated mitophagy regulates inflammasome activation during virus infection

Christopher Lupfer; Paul G. Thomas; Paras K. Anand; Peter Vogel; Jennifer Martinez; Gonghua Huang; Maggie Green; Mondira Kundu; Hongbo Chi; Ramnik J. Xavier; Douglas R. Green; Mohamed Lamkanfi; Charles A. Dinarello; Peter C. Doherty; Thirumala-Devi Kanneganti

NOD2 receptor and the cytosolic protein kinase RIPK2 regulate NF-κB and MAP kinase signaling during bacterial infections, but the role of this immune axis during viral infections has not been addressed. We demonstrate that Nod2−/− and Ripk2−/− mice are hypersusceptible to infection with influenza A virus. Ripk2−/− cells exhibited defective autophagy of mitochondria (mitophagy), leading to enhanced mitochondrial production of superoxide and accumulation of damaged mitochondria, which resulted in greater activation of the NLRP3 inflammasome and production of IL-18. RIPK2 regulated mitophagy in a kinase-dependent manner by phosphorylating the mitophagy inducer ULK1. Accordingly, Ulk1−/− cells exhibited enhanced mitochondrial production of superoxide and activation of caspase-1. These results demonstrate a role for NOD2-RIPK2 signaling in protection against virally triggered immunopathology by negatively regulating activation of the NLRP3 inflammasome and production of IL-18 via ULK1-dependent mitophagy.


Journal of Biological Chemistry | 2012

Toll or Interleukin-1 Receptor (TIR) Domain-containing Adaptor Inducing Interferon-β (TRIF)-mediated Caspase-11 Protease Production Integrates Toll-like Receptor 4 (TLR4) Protein- and Nlrp3 Inflammasome-mediated Host Defense against Enteropathogens

Prajwal Gurung; R. K. Subbarao Malireddi; Paras K. Anand; Dieter Demon; Lieselotte Vande Walle; Zhiping Liu; Peter Vogel; Mohamed Lamkanfi; Thirumala-Devi Kanneganti

Background: C. rodentium and E. coli induce noncanonical Nlrp3 inflammasome activation through caspase-11. Results: TLR4-TRIF are important for caspase-11 expression, caspase-1 activation, and downstream IL-1β and IL-18 production. Conclusion: TLR4-TRIF axis plays an important role in the up-regulation of caspase-11 and activation of noncanonical inflammasome. Significance: Our study identifies novel molecules upstream of caspase-11 that are involved in activation of noncanonical inflammasome. Enteric pathogens represent a major cause of morbidity and mortality worldwide. Toll-like receptor (TLR) and inflammasome signaling are critical for host responses against these pathogens, but how these pathways are integrated remains unclear. Here, we show that TLR4 and the TLR adaptor TRIF are required for inflammasome activation in macrophages infected with the enteric pathogens Escherichia coli and Citrobacter rodentium. In contrast, TLR4 and TRIF were dispensable for Salmonella typhimurium-induced caspase-1 activation. TRIF regulated expression of caspase-11, a caspase-1-related protease that is critical for E. coli- and C. rodentium-induced inflammasome activation, but dispensable for inflammasome activation by S. typhimurium. Thus, TLR4- and TRIF-induced caspase-11 synthesis is critical for noncanonical Nlrp3 inflammasome activation in macrophages infected with enteric pathogens.


Journal of Biological Chemistry | 2011

TLR2 and RIP2 Pathways Mediate Autophagy of Listeria monocytogenes via Extracellular Signal-regulated Kinase (ERK) Activation

Paras K. Anand; Stephen W. G. Tait; Mohamed Lamkanfi; Amal O. Amer; Gabriel Núñez; Gilles Pagès; Jacques Pouysségur; Maureen A. McGargill; Douglas R. Green; Thirumala-Devi Kanneganti

Background: Listeria monocytogenes is an intracellular pathogen that invades the host cytoplasm. Results: Cells deficient in TLR2 and NOD2 show defective autophagy of Listeria monocytogenes. Conclusion: Autophagy of Listeria is dependent on ERK pathway that is perturbed in TLR2- and NOD2-deficient cells. Significance: Our study establishes the role of innate immune receptors in autophagy of intracellular pathogens. Listeria monocytogenes is a facultative intracellular pathogen that invades both phagocytic and non-phagocytic cells. Recent studies have shown that L. monocytogenes infection activates the autophagy pathway. However, the innate immune receptors involved and the downstream signaling pathways remain unknown. Here, we show that macrophages deficient in the TLR2 and NOD/RIP2 pathway display defective autophagy induction in response to L. monocytogenes. Inefficient autophagy in Tlr2−/− and Nod2−/− macrophages led to a defect in bacteria colocalization with the autophagosomal marker GFP-LC3. Consequently, macrophages lacking TLR2 and NOD2 were found to be more susceptible to L. monocytogenes infection, as were the Rip2−/− mice. Tlr2−/− and Nod2−/− cells showed perturbed NF-κB and ERK signaling. However, autophagy against L. monocytogenes was dependent selectively on the ERK pathway. In agreement, wild-type cells treated with a pharmacological inhibitor of ERK or ERK-deficient cells displayed inefficient autophagy activation in response to L. monocytogenes. Accordingly, fewer bacteria were targeted to the autophagosomes and, consequently, higher bacterial growth was observed in cells deficient in the ERK signaling pathway. These findings thus demonstrate that TLR2 and NOD proteins, acting via the downstream ERK pathway, are crucial to autophagy activation and provide a mechanistic link between innate immune receptors and induction of autophagy against cytoplasm-invading microbes, such as L. monocytogenes.


PLOS ONE | 2010

Exosomal Hsp70 induces a pro-inflammatory response to foreign particles including mycobacteria

Paras K. Anand; Ellis Anand; Christopher Karl Ernst Bleck; Elsa Anes; Gareth Griffiths

Background Exosomes are endosome-derived vesicles that are released when multi-vesicular bodies (MVBs) fuse with the plasma membrane. Exosomes released from mycobacteria-infected cells have recently been shown to be pro-inflammatory. A prominent host molecule that is found within these exosomes is Hsp70, a member of the heat-shock family of proteins. Methodology/Principal Findings We first characterized the exosomes purified from control and mycobacteria-infected cells. We found that relative to uninfected cells, macrophages infected with M. smegmatis and M. avium release more exosomes and the exosomes they released had more Hsp70 on their surface. Both exosomes and exogenous Hsp70 treatment of macrophages led to NF-κB activation and TNFα release in uninfected macrophages; Hsp70 levels were elevated in mycobacteria-infected cells. Macrophage treatment with Hsp70 also led to increase in the phagocytosis and maturation of latex-bead phagosomes. Finally, Hsp70 pre-incubation of M. smegmatis- and M. avium-infected cells led to increased phago-lysosome fusion, as well as more killing of mycobacteria within macrophages. Conclusions/Significance Our results fit into an emerging concept whereby exosomes-containing Hsp70 are effective inducers of inflammation, also in response to mycobacterial infection.


Communicative & Integrative Biology | 2010

Exosomal membrane molecules are potent immune response modulators.

Paras K. Anand

Exosomes are endosome-derived vesicles (40-100nm) formed during the formation of multi-vesicular bodies (MVBs). Occasionally, the MVBs fuse with the plasma membrane releasing their intra-luminal vesicles into the extracellular media, which are then known as exosomes. Different cell types such as B-cells, dendritic cells, platelets, reticulocytes and macrophages can release exosomes and current research in this area is more focused towards exosomes released by antigen-presenting cells. Exosomes have recently been shown to be immunomodulatory and the mechanism of immune response initiation by them is beginning to emerge. Besides molecules present inside the lumen of exosomes, it has been suggested that certain exosomal membrane molecules can interact with their surface receptors on the target cells thereby inducing an immunomodulatory response. In this review, Hsp70 and galectin-5, two immunogenic molecules present on exosomal membrane, are discussed in detail for initiating this response.


Frontiers in Microbiology | 2011

Role of the Nlrp3 Inflammasome in Microbial Infection

Paras K. Anand; R. K. Subbarao Malireddi; Thirumala-Devi Kanneganti

The intracellular Nod-like receptor Nlrp3 has emerged as the most versatile innate immune receptor because of its broad specificity in mediating immune response to a wide range of microbial or danger signals. Nlrp3 mediates assembly of the inflammasome complex in the presence of microbial components leading to the activation of caspase-1 and the processing and release of the pro-inflammatory cytokines IL-1β and IL-18. In this review, we give an update on the recent literature examining the role of Nlrp3 inflammasome in response to fungal, bacterial, and viral infections.


PLOS Pathogens | 2014

Reactive Oxygen Species Regulate Caspase-11 Expression and Activation of the Non-canonical NLRP3 Inflammasome during Enteric Pathogen Infection

Christopher Lupfer; Paras K. Anand; Zhiping Liu; Kate Stokes; Peter Vogel; Mohamed Lamkanfi; Thirumala-Devi Kanneganti

Enteropathogenic and enterohemorrhagic bacterial infections in humans are a severe cause of morbidity and mortality. Although NOD-like receptors (NLRs) NOD2 and NLRP3 have important roles in the generation of protective immune responses to enteric pathogens, whether there is crosstalk among NLRs to regulate immune signaling is not known. Here, we show that mice and macrophages deficient in NOD2, or the downstream adaptor RIP2, have enhanced NLRP3- and caspases-11-dependent non-canonical inflammasome activation in a mouse model of enteropathogenic Citrobacter rodentium infection. Mechanistically, NOD2 and RIP2 regulate reactive oxygen species (ROS) production. Increased ROS in Rip2-deficient macrophages subsequently enhances c-Jun N-terminal kinase (JNK) signaling resulting in increased caspase-11 expression and activation, and more non-canonical NLRP3-dependant inflammasome activation. Intriguingly, this leads to protection of the colon epithelium for up to 10 days in Rip2-deficient mice infected with C. rodentium. Our findings designate NOD2 and RIP2 as key regulators of cellular ROS homeostasis and demonstrate for the first time that ROS regulates caspase-11 expression and non-canonical NLRP3 inflammasome activation through the JNK pathway.

Collaboration


Dive into the Paras K. Anand's collaboration.

Top Co-Authors

Avatar

Thirumala-Devi Kanneganti

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deepak Kaul

Post Graduate Institute of Medical Education and Research

View shared research outputs
Top Co-Authors

Avatar

Douglas R. Green

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Peter Vogel

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. K. Subbarao Malireddi

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Christopher Lupfer

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Elsa Anes

Instituto de Medicina Molecular

View shared research outputs
Top Co-Authors

Avatar

Meera Sharma

Post Graduate Institute of Medical Education and Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge