Paraskevi Christofidou
University of Leicester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paraskevi Christofidou.
The Lancet | 2012
Fadi J. Charchar; Lisa D.S. Bloomer; Timothy A. Barnes; Mark J. Cowley; Christopher P. Nelson; Yanzhong Wang; Radoslaw Debiec; Paraskevi Christofidou; Scott Nankervis; Anna F. Dominiczak; Ahmed Bani-Mustafa; Anthony J. Balmforth; Alistair S. Hall; Jeanette Erdmann; François Cambien; Panos Deloukas; Christian Hengstenberg; Chris J. Packard; Heribert Schunkert; Willem H. Ouwehand; Ian Ford; Alison H. Goodall; Mark A. Jobling; Nilesh J. Samani; Maciej Tomaszewski
Summary Background A sexual dimorphism exists in the incidence and prevalence of coronary artery disease—men are more commonly affected than are age-matched women. We explored the role of the Y chromosome in coronary artery disease in the context of this sexual inequity. Methods We genotyped 11 markers of the male-specific region of the Y chromosome in 3233 biologically unrelated British men from three cohorts: the British Heart Foundation Family Heart Study (BHF-FHS), West of Scotland Coronary Prevention Study (WOSCOPS), and Cardiogenics Study. On the basis of this information, each Y chromosome was tracked back into one of 13 ancient lineages defined as haplogroups. We then examined associations between common Y chromosome haplogroups and the risk of coronary artery disease in cross-sectional BHF-FHS and prospective WOSCOPS. Finally, we undertook functional analysis of Y chromosome effects on monocyte and macrophage transcriptome in British men from the Cardiogenics Study. Findings Of nine haplogroups identified, two (R1b1b2 and I) accounted for roughly 90% of the Y chromosome variants among British men. Carriers of haplogroup I had about a 50% higher age-adjusted risk of coronary artery disease than did men with other Y chromosome lineages in BHF-FHS (odds ratio 1·75, 95% CI 1·20–2·54, p=0·004), WOSCOPS (1·45, 1·08–1·95, p=0·012), and joint analysis of both populations (1·56, 1·24–1·97, p=0·0002). The association between haplogroup I and increased risk of coronary artery disease was independent of traditional cardiovascular and socioeconomic risk factors. Analysis of macrophage transcriptome in the Cardiogenics Study revealed that 19 molecular pathways showing strong differential expression between men with haplogroup I and other lineages of the Y chromosome were interconnected by common genes related to inflammation and immunity, and that some of them have a strong relevance to atherosclerosis. Interpretation The human Y chromosome is associated with risk of coronary artery disease in men of European ancestry, possibly through interactions of immunity and inflammation. Funding British Heart Foundation; UK National Institute for Health Research; LEW Carty Charitable Fund; National Health and Medical Research Council of Australia; European Union 6th Framework Programme; Wellcome Trust.
Hypertension | 2010
Maciej Tomaszewski; Radoslaw Debiec; Peter S. Braund; Christopher P. Nelson; Robert J. Hardwick; Paraskevi Christofidou; Veryan Codd; Suzanne Rafelt; Pim van der Harst; Dawn M. Waterworth; Kijoung Song; Peter Vollenweider; Gérard Waeber; Ewa Zukowska-Szczechowska; Paul R. Burton; Vincent Mooser; Fadi J. Charchar; John R. Thompson; Martin D. Tobin; Nilesh J. Samani
Genetic determinants of blood pressure are poorly defined. We undertook a large-scale, gene-centric analysis to identify loci and pathways associated with ambulatory systolic and diastolic blood pressure. We measured 24-hour ambulatory blood pressure in 2020 individuals from 520 white European nuclear families (the Genetic Regulation of Arterial Pressure of Humans in the Community Study) and genotyped their DNA using the Illumina HumanCVD BeadChip array, which contains ≈50 000 single nucleotide polymorphisms in >2000 cardiovascular candidate loci. We found a strong association between rs13306560 polymorphism in the promoter region of MTHFR and CLCN6 and mean 24-hour diastolic blood pressure; each minor allele copy of rs13306560 was associated with 2.6 mm Hg lower mean 24-hour diastolic blood pressure (P=1.2×10−8). rs13306560 was also associated with clinic diastolic blood pressure in a combined analysis of 8129 subjects from the Genetic Regulation of Arterial Pressure of Humans in the Community Study, the CoLaus Study, and the Silesian Cardiovascular Study (P=5.4×10−6). Additional analysis of associations between variants in gene ontology-defined pathways and mean 24-hour blood pressure in the Genetic Regulation of Arterial Pressure of Humans in the Community Study showed that cell survival control signaling cascades could play a role in blood pressure regulation. There was also a significant overrepresentation of rare variants (minor allele frequency: <0.05) among polymorphisms showing at least nominal association with mean 24-hour blood pressure indicating that a considerable proportion of its heritability may be explained by uncommon alleles. Through a large-scale gene-centric analysis of ambulatory blood pressure, we identified an association of a novel variant at the MTHFR/CLNC6 locus with diastolic blood pressure and provided new insights into the genetic architecture of blood pressure.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2013
Lisa D.S. Bloomer; Christopher P. Nelson; James Eales; Paraskevi Christofidou; Radoslaw Debiec; Jasbir Moore; Ewa Zukowska-Szczechowska; Alison H. Goodall; John F. Thompson; Nilesh J. Samani; Fadi J. Charchar; Maciej Tomaszewski
Objective—Haplogroup I of male-specific region of the human Y chromosome is associated with 50% increased risk of coronary artery disease. It is not clear to what extent conventional cardiovascular risk factors and genes of the male-specific region may explain this association. Approach and Results—A total of 1988 biologically unrelated men from 4 white European populations were genotyped using 11 Y chromosome single nucleotide polymorphisms and classified into 13 most common European haplogroups. Approximately 75% to 93% of the haplotypic variation of the Y chromosome in all cohorts was attributable to I, R1a, and R1b1b2 lineages. None of traditional cardiovascular risk factors, including body mass index, blood pressures, lipids, glucose, C-reactive protein, creatinine, and insulin resistance, was associated with haplogroup I of the Y chromosome in the joint inverse variance meta-analysis. Fourteen of 15 ubiquitous single-copy genes of the male-specific region were expressed in human macrophages. When compared with men with other haplogroups, carriers of haplogroup I had ≈0.61- and 0.64-fold lower expression of ubiquitously transcribed tetratricopeptide repeat, Y-linked gene (UTY) and protein kinase, Y-linked, pseudogene (PRKY) in macrophages (P=0.0001 and P=0.002, respectively). Conclusions—Coronary artery disease predisposing haplogroup I of the Y chromosome is associated with downregulation of UTY and PRKY genes in macrophages but not with conventional cardiovascular risk factors.Objective— Haplogroup I of male-specific region of the human Y chromosome is associated with 50% increased risk of coronary artery disease. It is not clear to what extent conventional cardiovascular risk factors and genes of the male-specific region may explain this association. Approach and Results— A total of 1988 biologically unrelated men from 4 white European populations were genotyped using 11 Y chromosome single nucleotide polymorphisms and classified into 13 most common European haplogroups. Approximately 75% to 93% of the haplotypic variation of the Y chromosome in all cohorts was attributable to I, R1a, and R1b1b2 lineages. None of traditional cardiovascular risk factors, including body mass index, blood pressures, lipids, glucose, C-reactive protein, creatinine, and insulin resistance, was associated with haplogroup I of the Y chromosome in the joint inverse variance meta-analysis. Fourteen of 15 ubiquitous single-copy genes of the male-specific region were expressed in human macrophages. When compared with men with other haplogroups, carriers of haplogroup I had ≈0.61- and 0.64-fold lower expression of ubiquitously transcribed tetratricopeptide repeat, Y-linked gene ( UTY ) and protein kinase, Y-linked, pseudogene ( PRKY ) in macrophages ( P =0.0001 and P =0.002, respectively). Conclusions— Coronary artery disease predisposing haplogroup I of the Y chromosome is associated with downregulation of UTY and PRKY genes in macrophages but not with conventional cardiovascular risk factors. # Significance {#article-title-29}
Journal of The American Society of Nephrology | 2011
Maciej Tomaszewski; Fadi J. Charchar; Christopher P. Nelson; Timothy A. Barnes; Michael A. Kaiser; Radoslaw Debiec; Paraskevi Christofidou; Suzanne Rafelt; Pim van der Harst; W. Wang; Christine Maric; Ewa Zukowska-Szczechowska; Nilesh J. Samani
Variants in the gene encoding fibroblast growth factor 1 (FGF1) co-segregate with familial susceptibility to hypertension, and glomerular upregulation of FGF1 associates with hypertension. To investigate whether variants in other members of the FGF signaling pathway may also associate with hypertension, we genotyped 629 subjects from 207 Polish families with hypertension for 79 single nucleotide polymorphisms in eight genes of this network. Family-based analysis showed that parents transmitted the major allele of the rs16892645 polymorphism in the gene encoding FGF binding protein 1 (FGFBP1) to hypertensive offspring more frequently than expected by chance (P=0.005). An independent cohort of 807 unrelated Polish subjects validated this association. Furthermore, compared with normotensive subjects, hypertensive subjects had approximately 1.5- and 1.4-fold higher expression of renal FGFBP1 mRNA and protein (P=0.04 and P=0.001), respectively. By immunohistochemistry, hypertension-related upregulation of FGFBP1 was most apparent in the glomerulus and juxtaglomerular space. Taken together, these data suggest that FGFBP1 associates with hypertension and that systematic analysis of signaling pathways can identify previously undescribed genetic associations.
Atherosclerosis | 2014
Lisa D.S. Bloomer; Christopher P. Nelson; Paraskevi Christofidou; Radoslaw Debiec; John F. Thompson; Ewa Zukowska-Szczechowska; Nilesh J. Samani; Fadi J. Charchar; Maciej Tomaszewski
OBJECTIVE Amongst middle-aged men, haplogroup I is associated with ≈ 50% higher risk of coronary artery disease than other paternal lineages of Y chromosome. We hypothesised that carriers of haplogroup I had higher levels of aggression and estrogens and/or lower levels of androgens early in life and thus might be more prone to cardiovascular disease than men with other lineages of Y chromosome. METHODS We reconstructed phylogenetic tree of the Y chromosome in >1000 young apparently healthy white men from the general population. Each Y chromosome was classified into one of 13 most common European lineages. Androgens (DHEA-S, androstenedione, total testosterone) and their metabolites (total estradiol, estrone) were measured by radioimmunoassays. Information on five dimensions of aggression (total, physical, verbal, anger and hostility) was collected using Buss and Perry questionnaire. RESULTS Approximately 17% men inherited haplogroup I from their fathers. Carriers of haplogroup I showed lower scores of verbal aggression than men with other haplogroups (β = -0.72, SE = 0.29, P = 0.012) and when further compared to carriers of most common R1a lineage and other haplogroups (β = -1.03, SE = 0.34, P = 0.003). However, these associations did not survive a correction for multiple testing. Sex steroids did not show even nominal level of association with haplogroup I. CONCLUSION Our data show no overall association between haplogroup I and sex-related phenotypes in young white men. These results also suggest that the previously identified association between haplogroup I and coronary artery disease is not likely mediated by unfavourable profile of sex steroids or heightened aggression early in life.
American Journal of Human Genetics | 2015
Paraskevi Christofidou; Christopher P. Nelson; Majid Nikpay; Liming Qu; Mingyao Li; Christina Loley; Radoslaw Debiec; Peter S. Braund; Fadi J. Charchar; Ares Rocanin Arjo; David-Alexandre Trégouët; Alison H. Goodall; François Cambien; Willem H. Ouwehand; Robert Roberts; Heribert Schunkert; Christian Hengstenberg; Muredach P. Reilly; Jeanette Erdmann; Ruth McPherson; Inke R. König; John R. Thompson; Nilesh J. Samani; Maciej Tomaszewski
Runs of homozygosity (ROHs) are recognized signature of recessive inheritance. Contributions of ROHs to the genetic architecture of coronary artery disease and regulation of gene expression in cells relevant to atherosclerosis are not known. Our combined analysis of 24,320 individuals from 11 populations of white European ethnicity showed an association between coronary artery disease and both the count and the size of ROHs. Individuals with coronary artery disease had approximately 0.63 (95% CI: 0.4-0.8) excess of ROHs when compared to coronary-artery-disease-free control subjects (p = 1.49 × 10(-9)). The average total length of ROHs was approximately 1,046.92 (95% CI: 634.4-1,459.5) kb greater in individuals with coronary artery disease than control subjects (p = 6.61 × 10(-7)). None of the identified individual ROHs was associated with coronary artery disease after correction for multiple testing. However, in aggregate burden analysis, ROHs favoring increased risk of coronary artery disease were much more common than those showing the opposite direction of association with coronary artery disease (p = 2.69 × 10(-33)). Individual ROHs showed significant associations with monocyte and macrophage expression of genes in their close proximity-subjects with several individual ROHs showed significant differences in the expression of 44 mRNAs in monocytes and 17 mRNAs in macrophages when compared to subjects without those ROHs. This study provides evidence for an excess of homozygosity in coronary artery disease in outbred populations and suggest the potential biological relevance of ROHs in cells of importance to the pathogenesis of atherosclerosis.
Journal of The American Society of Nephrology | 2015
Maciej Tomaszewski; James Eales; Stephen A. Myers; Guat Siew Chew; Christopher P. Nelson; Paraskevi Christofidou; Aishwarya Desai; Cara Büsst; Lukasz Wojnar; Katarzyna Musialik; Jacek Jozwiak; Radoslaw Debiec; Anna F. Dominiczak; Gerjan Navis; Wiek H. van Gilst; Pim van der Harst; Nilesh J. Samani; Stephen B. Harrap; Paweł Bogdański; Ewa Zukowska-Szczechowska; Fadi J. Charchar
The fibroblast growth factor 1 (FGF1) gene is expressed primarily in the kidney and may contribute to hypertension. However, the biologic mechanisms underlying the association between FGF1 and BP regulation remain unknown. We report that the major allele of FGF1 single nucleotide polymorphism rs152524 was associated in a dose-dependent manner with systolic BP (P = 9.65 × 10(-5)) and diastolic BP (P = 7.61 × 10(-3)) in a meta-analysis of 14,364 individuals and with renal expression of FGF1 mRNA in 126 human kidneys (P=9.0 × 10(-3)). Next-generation RNA sequencing revealed that upregulated renal expression of FGF1 or of each of the three FGF1 mRNA isoforms individually was associated with higher BP. FGF1-stratified coexpression analysis in two separate collections of human kidneys identified 126 FGF1 partner mRNAs, of which 71 and 63 showed at least nominal association with systolic and diastolic BP, respectively. Of those mRNAs, seven mRNAs in five genes (MME, PTPRO, REN, SLC12A3, and WNK1) had strong prior annotation to BP or hypertension. MME, which encodes an enzyme that degrades circulating natriuretic peptides, showed the strongest differential coexpression with FGF1 between hypertensive and normotensive kidneys. Furthermore, higher level of renal FGF1 expression was associated with lower circulating levels of atrial and brain natriuretic peptides. These findings indicate that FGF1 expression in the kidney is at least under partial genetic control and that renal expression of several FGF1 partner genes involved in the natriuretic peptide catabolism pathway, renin-angiotensin cascade, and sodium handling network may explain the association between FGF1 and BP.
PLOS ONE | 2013
Radoslaw Debiec; Paraskevi Christofidou; Lisa D.S. Bloomer; Paweł Bogdański; Lukasz Wojnar; Katarzyna Musialik; Fadi J. Charchar; John R. Thompson; Dawn M. Waterworth; Kijoung Song; Peter Vollenweider; Gérard Waeber; Ewa Zukowska-Szczechowska; Nilesh J. Samani; David G. Lambert; Maciej Tomaszewski
Urotensin-II controls ion/water homeostasis in fish and vascular tone in rodents. We hypothesised that common genetic variants in urotensin-II pathway genes are associated with human blood pressure or renal function. We performed family-based analysis of association between blood pressure, glomerular filtration and genes of the urotensin-II pathway (urotensin-II, urotensin-II related peptide, urotensin-II receptor) saturated with 28 tagging single nucleotide polymorphisms in 2024 individuals from 520 families; followed by an independent replication in 420 families and 7545 unrelated subjects. The expression studies of the urotensin-II pathway were carried out in 97 human kidneys. Phylogenetic evolutionary analysis was conducted in 17 vertebrate species. One single nucleotide polymorphism (rs531485 in urotensin-II gene) was associated with adjusted estimated glomerular filtration rate in the discovery cohort (p = 0.0005). It showed no association with estimated glomerular filtration rate in the combined replication resource of 8724 subjects from 6 populations. Expression of urotensin-II and its receptor showed strong linear correlation (r = 0.86, p<0.0001). There was no difference in renal expression of urotensin-II system between hypertensive and normotensive subjects. Evolutionary analysis revealed accumulation of mutations in urotensin-II since the divergence of primates and weaker conservation of urotensin-II receptor in primates than in lower vertebrates. Our data suggest that urotensin-II system genes are unlikely to play a major role in genetic control of human blood pressure or renal function. The signatures of evolutionary forces acting on urotensin-II system indicate that it may have evolved towards loss of function since the divergence of primates.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2013
Lisa D.S. Bloomer; Christopher P. Nelson; James Eales; Paraskevi Christofidou; Radoslaw Debiec; Jasbir Moore; Ewa Zukowska-Szczechowska; Alison H. Goodall; John F. Thompson; Nilesh J. Samani; Fadi J. Charchar; Maciej Tomaszewski
Objective—Haplogroup I of male-specific region of the human Y chromosome is associated with 50% increased risk of coronary artery disease. It is not clear to what extent conventional cardiovascular risk factors and genes of the male-specific region may explain this association. Approach and Results—A total of 1988 biologically unrelated men from 4 white European populations were genotyped using 11 Y chromosome single nucleotide polymorphisms and classified into 13 most common European haplogroups. Approximately 75% to 93% of the haplotypic variation of the Y chromosome in all cohorts was attributable to I, R1a, and R1b1b2 lineages. None of traditional cardiovascular risk factors, including body mass index, blood pressures, lipids, glucose, C-reactive protein, creatinine, and insulin resistance, was associated with haplogroup I of the Y chromosome in the joint inverse variance meta-analysis. Fourteen of 15 ubiquitous single-copy genes of the male-specific region were expressed in human macrophages. When compared with men with other haplogroups, carriers of haplogroup I had ≈0.61- and 0.64-fold lower expression of ubiquitously transcribed tetratricopeptide repeat, Y-linked gene (UTY) and protein kinase, Y-linked, pseudogene (PRKY) in macrophages (P=0.0001 and P=0.002, respectively). Conclusions—Coronary artery disease predisposing haplogroup I of the Y chromosome is associated with downregulation of UTY and PRKY genes in macrophages but not with conventional cardiovascular risk factors.Objective— Haplogroup I of male-specific region of the human Y chromosome is associated with 50% increased risk of coronary artery disease. It is not clear to what extent conventional cardiovascular risk factors and genes of the male-specific region may explain this association. Approach and Results— A total of 1988 biologically unrelated men from 4 white European populations were genotyped using 11 Y chromosome single nucleotide polymorphisms and classified into 13 most common European haplogroups. Approximately 75% to 93% of the haplotypic variation of the Y chromosome in all cohorts was attributable to I, R1a, and R1b1b2 lineages. None of traditional cardiovascular risk factors, including body mass index, blood pressures, lipids, glucose, C-reactive protein, creatinine, and insulin resistance, was associated with haplogroup I of the Y chromosome in the joint inverse variance meta-analysis. Fourteen of 15 ubiquitous single-copy genes of the male-specific region were expressed in human macrophages. When compared with men with other haplogroups, carriers of haplogroup I had ≈0.61- and 0.64-fold lower expression of ubiquitously transcribed tetratricopeptide repeat, Y-linked gene ( UTY ) and protein kinase, Y-linked, pseudogene ( PRKY ) in macrophages ( P =0.0001 and P =0.002, respectively). Conclusions— Coronary artery disease predisposing haplogroup I of the Y chromosome is associated with downregulation of UTY and PRKY genes in macrophages but not with conventional cardiovascular risk factors. # Significance {#article-title-29}
Journal of Hypertension | 2016
Paraskevi Christofidou; Christopher P. Nelson; Majid Nikpay; Liming Qu; Muredach P. Reilly; Jeanette Erdmann; Ruth McPherson; Inke R. König; John R. Thompson; Nilesh J. Samani; Maciej Tomaszewski
Objective: Homozygosity mapping is a strategy with a potential to identify and quantify the recessive component of inheritance - long stretches (usually >1Mb) of consecutive homozygous genotypes are known as runs of homozygosity (ROHs). A comprehensive analysis was undertaken regarding the contribution of ROHs to the genetic architecture of coronary artery disease (CAD) and regulation of gene expression in monocytes and macrophages. Design and Method: Approximately 2.5 million single nucleotide polymorphisms (SNPs) from previously conducted genome-wide association (GWA) studies in 12,123 individuals with CAD and 12,197 CAD-free controls from 11 European populations were used to explore differences in the genetic architecture of homozygosity between the two groups. Consensus ROHs overlapping across studies were identified and their relevance to CAD was examined individually and at the aggregate level. Finally, we combined genome-wide consensus ROHs with data from monocyte and macrophage transcriptome profiling in the Cardiogenics study to explore whether the presence of ROHs was related to expression of genes that map to specific ROHs. Results: Individuals with CAD had approximately 0.63 (95% CI: 0.4–0.8, P = 1.49 × 10−9) excess of ROHs when compared to CAD-free controls. The average total length of ROHs was approximately 1046.92 kb (95% CI: 634.4–1459.5, P = 6.61 × 10−7) greater in individuals with CAD than control subjects. Overlapping consensus ROHs favouring increased risk of CAD were much more common than those showing the opposite direction of association with CAD (P = 2.69 × 10−33). Subjects with ROHs showed significant differences in the expression of 44 mRNAs in monocytes and 17 mRNAs in macrophages when compared to subjects without those ROHs. Conclusions: This study provides evidence for an excess of homozygosity in CAD and suggest the potential biological relevance of ROHs in cells of importance to the pathogenesis of atherosclerosis. Our data suggest that recessive variants may be an important factor in the genetic architecture of CAD.