Paraskevi N. Polymenakou
University of Crete
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paraskevi N. Polymenakou.
PLOS ONE | 2010
Roberto Danovaro; Cinzia Corinaldesi; Gianfranco D'Onghia; Bella S. Galil; Cristina Gambi; Andrew J. Gooday; Nikolaos Lampadariou; Gian Marco Luna; Caterina Morigi; Karine Olu; Paraskevi N. Polymenakou; Eva Ramírez-Llodra; A. Sabbatini; Francesc Sardà; Myriam Sibuet; Anastasios Tselepides
Deep-sea ecosystems represent the largest biome of the global biosphere, but knowledge of their biodiversity is still scant. The Mediterranean basin has been proposed as a hot spot of terrestrial and coastal marine biodiversity but has been supposed to be impoverished of deep-sea species richness. We summarized all available information on benthic biodiversity (Prokaryotes, Foraminifera, Meiofauna, Macrofauna, and Megafauna) in different deep-sea ecosystems of the Mediterranean Sea (200 to more than 4,000 m depth), including open slopes, deep basins, canyons, cold seeps, seamounts, deep-water corals and deep-hypersaline anoxic basins and analyzed overall longitudinal and bathymetric patterns. We show that in contrast to what was expected from the sharp decrease in organic carbon fluxes and reduced faunal abundance, the deep-sea biodiversity of both the eastern and the western basins of the Mediterranean Sea is similarly high. All of the biodiversity components, except Bacteria and Archaea, displayed a decreasing pattern with increasing water depth, but to a different extent for each component. Unlike patterns observed for faunal abundance, highest negative values of the slopes of the biodiversity patterns were observed for Meiofauna, followed by Macrofauna and Megafauna. Comparison of the biodiversity associated with open slopes, deep basins, canyons, and deep-water corals showed that the deep basins were the least diverse. Rarefaction curves allowed us to estimate the expected number of species for each benthic component in different bathymetric ranges. A large fraction of exclusive species was associated with each specific habitat or ecosystem. Thus, each deep-sea ecosystem contributes significantly to overall biodiversity. From theoretical extrapolations we estimate that the overall deep-sea Mediterranean biodiversity (excluding prokaryotes) reaches approximately 2805 species of which about 66% is still undiscovered. Among the biotic components investigated (Prokaryotes excluded), most of the unknown species are within the phylum Nematoda, followed by Foraminifera, but an important fraction of macrofaunal and megafaunal species also remains unknown. Data reported here provide new insights into the patterns of biodiversity in the deep-sea Mediterranean and new clues for future investigations aimed at identifying the factors controlling and threatening deep-sea biodiversity.
Environmental Health Perspectives | 2007
Paraskevi N. Polymenakou; Manolis Mandalakis; Euripides G. Stephanou; Anastasios Tselepides
Background The distribution of microorganisms, and especially pathogens, over airborne particles of different sizes has been ignored to a large extent, but it could have significant implications regarding the dispersion of these microorganisms across the planet, thus affecting human health. Objectives We examined the microbial quality of the aerosols over the eastern Mediterranean region during an African storm to determine the size distribution of microorganisms in the air. Methods We used a five-stage cascade impactor for bioaerosol collection in a coastal city on the eastern Mediterranean Sea during a north African dust storm. Bacterial communities associated with aerosol particles of six different size ranges were characterized following molecular culture–independent methods, regardless of the cell culturability (analysis of 16S rRNA genes). Results All 16S rDNA clone libraries were diverse, including sequences commonly found in soil and marine ecosystems. Spore-forming bacteria such as Firmicutes dominated large particle sizes (> 3.3 μm), whereas clones affiliated with Actinobacteria (found commonly in soil) and Bacteroidetes (widely distributed in the environment) gradually increased their abundance in aerosol particles of reduced size (< 3.3 μm). A large portion of the clones detected at respiratory particle sizes (< 3.3 μm) were phylogenetic neighbors to human pathogens that have been linked to several diseases. Conclusions The presence of aerosolized bacteria in small size particles may have significant implications to human health via intercontinental transportation of pathogens.
Microbial Ecology | 2005
Paraskevi N. Polymenakou; Stefan Bertilsson; Anastasios Tselepides; Euripides G. Stephanou
The regional variability of sediment bacterial community composition and diversity was studied by comparative analysis of four large 16S ribosomal DNA (rDNA) clone libraries from sediments in different regions of the Eastern Mediterranean Sea (Thermaikos Gulf, Cretan Sea, and South lonian Sea). Amplified rDNA restriction analysis of 664 clones from the libraries indicate that the rDNA richness and evenness was high: for example, a near-1:1 relationship among screened clones and number of unique restriction patterns when up to 190 clones were screened for each library. Phylogenetic analysis of 207 bacterial 16S rDNA sequences from the sediment libraries demonstrated that Gamma-, Delta-, and Alphaproteobacteria, Holophaga/Acidobacteria, Planctomycetales, Actinobacteria, Bacteroidetes, and Verrucomicrobia were represented in all four libraries. A few clones also grouped with the Betaproteobacteria, Nitrospirae, Spirochaetales, Chlamydiae, Firmicutes, and candidate division OPl 1. The abundance of sequences affiliated with Gammaproteobacteria was higher in libraries from shallow sediments in the Thermaikos Gulf (30xa0m) and the Cretan Sea (100xa0m) compared to the deeper South Ionian station (2790xa0m). Most sequences in the four sediment libraries clustered with uncultured 16S rDNA phylotypes from marine habitats, and many of the closest matches were clones from hydrocarbon seeps, benzene-mineralizing consortia, sulfate reducers, sulk oxidizers, and ammonia oxidizers. LIBSHUFF statistics of 16S rDNA gene sequences from the four libraries revealed major differences, indicating either a very high richness in the sediment bacterial communities or considerable variability in bacterial community composition among regions, or both.
Biodegradation | 2005
Paraskevi N. Polymenakou; Euripides G. Stephanou
A new indigenous soil bacterium Pseudomonas sp. growing on phenol and on a mixture of phenol, toluene, o-cresol, naphthalene and 1,2,3-trimethylbenzene (1,2,3-TMB) was isolated and characterized. Phylogenetic analysis suggested its classification to Pseudomonadaceae family and showed 99.8% DNA sequence identity to Pseudomonas pseudoalcaligenes species. The isolate was psychrotroph, with growth temperatures ranging from ca. 0 to 40 °C. The GC–MS structural analysis of metabolic products of phenol degradation by this microorganism indicated a possible ortho cleavage pathway for high concentrations (over 200 mg L−1) of phenol. Biodegradation rates by this species were found to be three times more effective than those previously reported by other Pseudomonas strains. The effect of temperature on phenol degradation was studied in batch cultures at temperatures ranging from 10 to 40u2009°C and different initial phenol concentrations (up to 500u2009mgu2009L−1). Above 300u2009mgu2009L−1 of initial phenol concentration no considerable depletion was recorded at both 10 and 40u2009°C. Maximum degradation rates for phenol were recorded at 30u2009°C. The biodegradation rate of phenol was studied also in the presence of additional carbon sources (o-cresol, toluene, naphthalene, 1,2,3-TMB) at the optimum growth temperature and was found significantly lower by a factor of eight in respect to the strong competitive inhibition between the substrates and the more available sources of carbon and energy. The Haldane equation μ=μm S/(KSu2009+u2009Su2009+u2009S2/KI) was found to best fit the experimental data at the optimum temperature of 30u2009°C than the Monod equation with kinetic constants μm=0.27u2009h−1, KS=56.70u2009mgu2009L−1, KI=249.08u2009mgu2009L−1.
Microbial Ecology | 2005
Paraskevi N. Polymenakou; Stefan Bertilsson; Anastasios Tselepides; Euripides G. Stephanou
The bacterial community composition of marine surface sediments originating from various regions of the Eastern Mediterranean Sea (12 sampling sites) was compared by parallel use of three fingerprinting methods: analysis of 16S rRNA gene fragment heterogeneity by denaturing gradient electrophoresis (DGGE), terminal restriction fragment length polymorphism (T-RFLP), and analysis of phospholipid-linked fatty acid composition (PLFA). Sampling sites were located at variable depths (30–2860 m; water column depth above the sediments) and the sediments differed greatly also in their degree of petroleum contamination (0.4–18 μg g−1), organic carbon (0.38–1.5%), and chlorophyll a content (0.01–7.7 μg g−1). Despite a high degree of correlation between the three different community fingerprint methods, some major differences were observed. DGGE banding patterns showed a significant separation of sediment communities from the northern, more productive waters of the Thermaikos Gulf and the oligotrophic waters of the Cretan, S. Ionian, and Levantine Sea. T-RFLP analysis clearly separated the communities of deep sediments (>1494 m depth) from their shallow (<617 m) counterparts. PLFA analysis grouped a shallow station from the productive waters of the north with the deep oligotrophic sediments from the Ionian and Levantine Sea, with low concentrations of PLFAs, and hence low microbial biomass, as the common denominator. The degree of petroleum contamination was not significantly correlated to the apparent composition of the microbial communities for any of the three methods, whereas organic carbon content and sediment chlorophyll a were important in this regard.
Systematic and Applied Microbiology | 2009
Paraskevi N. Polymenakou; Nikolaos Lampadariou; Manolis Mandalakis; Anastasios Tselepides
This study is the first culture-independent report on the regional variability of bacterial diversity in oxic sediments from the unexplored southern Cretan margin (SCM). Three main deep basins (water column depths: 2670-3603m), located at the mouth of two submarine canyons (Samaria Gorge and Paximades Channel) and an adjacent slope system, as well as two shallow upper-slope stations (water column depths: 215 and 520m), were sampled. A total of 454 clones were sequenced and the bacterial richness, estimated through five clone libraries using rarefaction analysis, ranged from 71 to 296 unique phylotypes. The average sequence identity of the retrieved Cretan margin sequences compared to the >1,000,000 known rRNA sequences was only 93.5%. A diverse range of prokaryotes was found in the sediments, which were represented by 15 different taxonomic groups at the phylum level. The phylogenetic analysis revealed that these new sequences grouped with the phyla Acidobacteria, Planctomycetes, Actinobacteria, Gamma-, Alpha- and Delta-proteobacteria. Only a few bacterial clones were affiliated with Chloroflexi, Bacteroidetes, Firmicutes, Gemmatimonadetes, Verrucomicrobia, Nitrospirae, Beta-proteobacteria, Lentisphaerae and Dictyoglomi. A large fraction of the retrieved sequences (12%) did not fall into any taxonomic division previously characterized by molecular criteria, whereas four novel division-level lineages, termed candidate division SCMs, were identified. Bacterial community composition demonstrated significant differences in comparison to previous phylogenetic studies. This divergence was mainly triggered by the dominance of Acidobacteria and Actinobacteria and reflected a bacterial community different from that currently known for oxic and pristine marine sediments.
International Microbiology | 2010
Ioanna Kouridaki; Paraskevi N. Polymenakou; Anastasios Tselepides; Manolis Mandalakis; Kenneth L. Smith
The variability of bacterial community composition and diversity was studied by comparative analysis of five 16S rRNA gene clone libraries from deep-sea sediments (water column depth: 4000 m) of the Northeastern Pacific Ocean and Eastern Mediterranean Sea. This is the first comparison of the bacterial communities living in these deep-sea ecosystems. The estimated chlorophyll a, organic carbon, and C/N ratio provided evidence of significant differences in the trophic state of the sediments between the Northeastern Pacific Ocean and the much warmer Eastern Mediterranean Sea. A diverse range of 16S rRNA gene phylotypes was found in the sediments of both regions. These were represented by 11 different taxonomic groups, with Gammaproteobacteria predominating in the Northeastern Pacific Ocean sediments and Acidobacteria in the Eastern Mediterranean microbial community. In addition, several 16S rRNA gene phylotypes only distantly related to any of the previously identified sequences (non-affiliated rRNA genes) represented a significant fraction of the total sequences. The potential diversity at the two sites differs but remains largely unexplored and remains of continuing scientific interest.
PLOS ONE | 2015
Cheng Cheng; Lynsey MacIntyre; Usama Ramadan Abdelmohsen; Hannes Horn; Paraskevi N. Polymenakou; RuAngelie Edrada-Ebel; Ute Hentschel
Marine sponge–associated actinomycetes are considered as promising sources for the discovery of novel biologically active compounds. In the present study, a total of 64 actinomycetes were isolated from 12 different marine sponge species that had been collected offshore the islands of Milos and Crete, Greece, eastern Mediterranean. The isolates were affiliated to 23 genera representing 8 different suborders based on nearly full length 16S rRNA gene sequencing. Four putatively novel species belonging to genera Geodermatophilus, Microlunatus, Rhodococcus and Actinomycetospora were identified based on a 16S rRNA gene sequence similarity of < 98.5% to currently described strains. Eight actinomycete isolates showed bioactivities against Trypanosma brucei brucei TC221 with half maximal inhibitory concentration (IC50) values <20 μg/mL. Thirty four isolates from the Milos collection and 12 isolates from the Crete collection were subjected to metabolomic analysis using high resolution LC-MS and NMR for dereplication purposes. Two isolates belonging to the genera Streptomyces (SBT348) and Micromonospora (SBT687) were prioritized based on their distinct chemistry profiles as well as their anti-trypanosomal activities. These findings demonstrated the feasibility and efficacy of utilizing metabolomics tools to prioritize chemically unique strains from microorganism collections and further highlight sponges as rich source for novel and bioactive actinomycetes.
GigaScience | 2014
Neil Davies; Dawn Field; Linda A. Amaral-Zettler; Melody S. Clark; John Deck; Alexei J. Drummond; Daniel P. Faith; Jonathan B. Geller; Jack A. Gilbert; Frank Oliver Glöckner; Penny R. Hirsch; Jo-Ann Leong; Christopher P. Meyer; Matthias Obst; Serge Planes; Chris Scholin; Alfried P. Vogler; Ruth D. Gates; Rob Toonen; Véronique Berteaux-Lecellier; Michèle Barbier; Katherine Barker; Stefan Bertilsson; Mesude Bicak; Matthew J. Bietz; Jason Bobe; Levente Bodrossy; Ángel Borja; Jonathan A. Coddington; Jed A. Fuhrman
The co-authors of this paper hereby state their intention to work together to launch the Genomic Observatories Network (GOs Network) for which this document will serve as its Founding Charter. We define a Genomic Observatory as an ecosystem and/or site subject to long-term scientific research, including (but not limited to) the sustained study of genomic biodiversity from single-celled microbes to multicellular organisms.An international group of 64 scientists first published the call for a global network of Genomic Observatories in January 2012. The vision for such a network was expanded in a subsequent paper and developed over a series of meetings in Bremen (Germany), Shenzhen (China), Moorea (French Polynesia), Oxford (UK), Pacific Grove (California, USA), Washington (DC, USA), and London (UK). While this community-building process continues, here we express our mutual intent to establish the GOs Network formally, and to describe our shared vision for its future. The views expressed here are ours alone as individual scientists, and do not necessarily represent those of the institutions with which we are affiliated.
GigaScience | 2017
Lucas Moitinho-Silva; Shaun Nielsen; Amnon Amir; Antonio González; Gail Ackermann; Carlo Cerrano; Carmen Astudillo-García; Cole Easson; Detmer Sipkema; Fang Liu; Georg Steinert; Giorgos Kotoulas; Grace P. McCormack; Guofang Feng; James J. Bell; Jan Vicente; Johannes R. Björk; José M. Montoya; Julie B. Olson; Julie Reveillaud; Laura Steindler; Mari Carmen Pineda; Maria V. Marra; Micha Ilan; Michael W. Taylor; Paraskevi N. Polymenakou; Patrick M. Erwin; Peter J. Schupp; Rachel L. Simister; Rob Knight
Abstract Marine sponges (phylum Porifera) are a diverse, phylogenetically deep-branching clade known for forming intimate partnerships with complex communities of microorganisms. To date, 16S rRNA gene sequencing studies have largely utilised different extraction and amplification methodologies to target the microbial communities of a limited number of sponge species, severely limiting comparative analyses of sponge microbial diversity and structure. Here, we provide an extensive and standardised dataset that will facilitate sponge microbiome comparisons across large spatial, temporal, and environmental scales. Samples from marine sponges (n = 3569 specimens), seawater (n = 370), marine sediments (n = 65) and other environments (n = 29) were collected from different locations across the globe. This dataset incorporates at least 268 different sponge species, including several yet unidentified taxa. The V4 region of the 16S rRNA gene was amplified and sequenced from extracted DNA using standardised procedures. Raw sequences (total of 1.1 billion sequences) were processed and clustered with (i) a standard protocol using QIIME closed-reference picking resulting in 39 543 operational taxonomic units (OTU) at 97% sequence identity, (ii) a de novo clustering using Mothur resulting in 518 246 OTUs, and (iii) a new high-resolution Deblur protocol resulting in 83 908 unique bacterial sequences. Abundance tables, representative sequences, taxonomic classifications, and metadata are provided. This dataset represents a comprehensive resource of sponge-associated microbial communities based on 16S rRNA gene sequences that can be used to address overarching hypotheses regarding host-associated prokaryotes, including host specificity, convergent evolution, environmental drivers of microbiome structure, and the sponge-associated rare biosphere.