Parham Rasoulinejad
University of Western Ontario
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Parham Rasoulinejad.
The Spine Journal | 2012
Parham Rasoulinejad; Stewart D. McLachlin; Stewart I. Bailey; Kevin R. Gurr; Cynthia E. Dunning
BACKGROUND CONTEXT Unilateral facet disruptions are relatively common in the cervical spine; however, the spectrum of injury is large, and little is known regarding the magnitude of instability expected to be present in an isolated posterior osteoligamentous injury. PURPOSE To quantify the contribution of the posterior osteoligamentous structures to cervical spine stability during simulated flexion-extension (FE), lateral bend (LB), and axial rotation (AR). STUDY DESIGN An in vitro biomechanical study. METHODS Eight cadaveric C2-C5 spines were used in this study. A custom-developed spinal loading simulator applied independent FE, LB, and AR to the specimens at 3°/s up to ±1.5 Nm. Using an optical tracking system, data were collected for the intact specimen and after sequential surgical interventions of posterior ligamentous complex (PLC) disruption, unilateral capsular disruption, progressive resection of the inferior articular process of C3 by one-half, and finally complete resection of the inferior articular process of C3. The magnitude of segmental and overall range of motion (ROM) for each simulated movement along with the overall neutral zone (NZ) was analyzed using two-way repeated-measures analyses of variance and post hoc Student-Newman-Keuls tests (α=.05). RESULTS An increase in ROM was evident for all movements (p<.001). Within FE, ROM increased after cutting only the PLC (p<.05). For AR, sectioning of the PLC and complete bony facet fracture increased ROM (p<.05). Lateral bend ROM increased after facet capsular injury and complete articular facet removal (p<.05). There was an overall effect of injury pattern on the magnitude of the NZ for both FE (p<.001) and AR (p<.001) but not for LB (p=.6); however, the maximum increase in NZ generated was only 30%. CONCLUSIONS The PLC and facet complex are dominant stabilizers for FE and AR, respectively. The overall changes in both ROM and NZ were relatively small but consistent with an isolated posterior osteoligamentous complex injury of the Stage I flexion-distraction injury.
Journal of Neurosurgery | 2017
Jennifer C. Urquhart; Osama A. Alrehaili; Charles G. Fisher; Alyssa Fleming; Parham Rasoulinejad; Kevin R. Gurr; Stewart I. Bailey; Fawaz Siddiqi
OBJECTIVE A multicenter, prospective, randomized equivalence trial comparing a thoracolumbosacral orthosis (TLSO) to no orthosis (NO) in the treatment of acute AO Type A3 thoracolumbar burst fractures was recently conducted and demonstrated that the two treatments following an otherwise similar management protocol are equivalent at 3 months postinjury. The purpose of the present study was to determine whether there was a difference in long-term clinical and radiographic outcomes between the patients treated with and those treated without a TLSO. Here, the authors present the 5- to 10-year outcomes (mean follow-up 7.9 ± 1.1 years) of the patients at a single site from the original multicenter trial. METHODS Between July 2002 and January 2009, a total of 96 subjects were enrolled in the primary trial and randomized to two groups: TLSO or NO. Subjects were enrolled if they had an AO Type A3 burst fracture between T-10 and L-3 within the previous 72 hours, kyphotic deformity < 35°, no neurological deficit, and an age of 16-60 years old. The present study represents a subset of those patients: 16 in the TLSO group and 20 in the NO group. The primary outcome measure was the Roland Morris Disability Questionnaire (RMDQ) score at the last 5- to 10-year follow-up. Secondary outcome measures included kyphosis, satisfaction, the Numeric Rating Scale for back pain, and the 12-Item Short-Form Health Survey (SF-12) Mental and Physical Component Summary (MCS and PCS) scores. In the original study, outcome measures were administered at admission and 2 and 6 weeks, 3 and 6 months, and 1 and 2 years after injury; in the present extended follow-up study, the outcome measures were administered 5-10 years postinjury. Treatment comparison between patients in the TLSO group and those in the NO group was performed at the latest available follow-up, and the time-weighted average treatment effect was determined using a mixed-effects model of longitudinal regression for repeated measures averaged over all time periods. Missing data were assumed to be missing at random and were replaced with a set of plausible values derived using a multiple imputation procedure. RESULTS The RMDQ score at 5-10 years postinjury was 3.6 ± 0.9 (mean ± SE) for the TLSO group and 4.8 ± 1.5 for the NO group (p = 0.486, 95% CI -2.3 to 4.8). Average kyphosis was 18.3° ± 2.2° for the TLSO group and 18.6° ± 3.8° for the NO group (p = 0.934, 95% CI -7.8 to 8.5). No differences were found between the NO and TLSO groups with time-weighted average treatment effects for RMDQ 1.9 (95% CI -1.5 to 5.2), for PCS -2.5 (95% CI -7.9 to 3.0), for MCS -1.2 (95% CI -6.7 to 4.2) and for average pain 0.9 (95% CI -0.5 to 2.2). CONCLUSIONS Compared with patients treated with a TLSO, patients treated using early mobilization without orthosis maintain similar pain relief and improvement in function for 5-10 years.
The Spine Journal | 2016
Reina Yao; Stewart D. McLachlin; Parham Rasoulinejad; Kevin R. Gurr; Fawaz Siddiqi; Cynthia E. Dunning
BACKGROUND CONTEXT Anterior cervical discectomy and fusion with plating (ACDFP) is commonly used for the treatment of distractive-flexion cervical spine injuries. Despite the prevalence of ACDFP, there is little biomechanical evidence for graft height selection in the unstable trauma scenario. PURPOSE This study aimed to investigate whether changes in graft height affect the kinematics of instrumented ACDFP C5-C6 motion segments in the context of varying degrees of simulated facet injuries. STUDY DESIGN In vitro cadaveric biomechanical study was used as study design. METHODS Seven C5-C6 motion segments were mounted in a custom spine simulator and taken through flexibility testing in axial rotation, lateral flexion, and flexion-extension. Specimens were first tested intact, followed by a standardized injury model (SIM) for a unilateral facet perch at C5-C6. The stability of the ACDFP approach was then examined with three graft heights (computed tomography-measured disc space height, disc space height undersized by 2.5 mm, and disc space height oversized by 2.5 mm) within three increasing unstable injuries (SIM, an added unilateral facet fracture, and a simulated bilateral facet dislocation injury). RESULTS In all motions, regardless of graft size, ACDFP reduced range of motion (ROM) from the SIM state. For flexion-extension, the oversized graft had a larger decrease in ROM compared with the other graft sizes (p<.05). Between graft sizes and injury states, there were a number of interactions in axial rotation and lateral flexion, where specifically in the most severe injury, the undersized graft had a larger decrease in ROM than the other two sizes (p<.05). CONCLUSIONS This study found that graft size did affect the kinematic stability of ACDFP in a series of distractive-flexion injuries; the undersized graft resulted in both facet overlap and locking of the uncovertebral joints leading to decreased ROM in lateral bending and axial rotation, whereas an oversized graft provided larger ROM decreases in flexion-extension. As such, a graft that engages the uncovertebral joint may be more advantageous in providing a rigid environment for fusion with ACDFP.
international conference information processing | 2017
Haoliang Sun; Xiantong Zhen; Parham Rasoulinejad; Yilong Yin; Shuo Li
The Cobb angle that quantitatively evaluates the spinal curvature plays an important role in the scoliosis diagnosis and treatment. Conventional measurement of these angles suffers from huge variability and low reliability due to intensive manual intervention. However, since there exist high ambiguity and variability around boundaries of vertebrae, it is challenging to obtain Cobb angles automatically. In this paper, we formulate the estimation of the Cobb angles from spinal X-rays as a multi-output regression task. We propose structured support vector regression (S\(^2\)VR) to jointly estimate Cobb angles and landmarks of the spine in X-rays in one single framework. The proposed S\(^2\)VR can faithfully handle the nonlinear relationship between input images and quantitative outputs, while explicitly capturing the intrinsic correlation of outputs. We introduce the manifold regularization to exploit the geometry of the output space. We propose learning the kernel in S\(^2\)VR by kernel alignment to enhance its discriminative ability. The proposed method is evaluated on the spinal X-rays dataset of 439 scoliosis subjects, which achieves the inspiring correlation coefficient of \(92.76\%\) with ground truth obtained manually by human experts and outperforms two baseline methods. Our method achieves the direct estimation of Cobb angles with high accuracy, indicating its great potential in clinical use.
medical image computing and computer assisted intervention | 2017
Hongbo Wu; Parham Rasoulinejad; Shuo Li
Adolescent Idiopathic Scoliosis (AIS) exhibits as an abnormal curvature of the spine in teens. Conventional radiographic assessment of scoliosis is unreliable due to the need for manual intervention from clinicians as well as high variability in images. Current methods for automatic scoliosis assessment are not robust due to reliance on segmentation or feature engineering. We propose a novel framework for automated landmark estimation for AIS assessment by leveraging the strength of our newly designed BoostNet, which creatively integrates the robust feature extraction capabilities of Convolutional Neural Networks (ConvNet) with statistical methodologies to adapt to the variability in X-ray images. In contrast to traditional ConvNets, our BoostNet introduces two novel concepts: (1) a BoostLayer for robust discriminatory feature embedding by removing outlier features, which essentially minimizes the intra-class variance of the feature space and (2) a spinal structured multi-output regression layer for compact modelling of landmark coordinate correlation. The BoostNet architecture estimates required spinal landmarks within a mean squared error (MSE) rate of 0.00068 in 431 crossvalidation images and 0.0046 in 50 test images, demonstrating its potential for robust automated scoliosis assessment in the clinical setting.
Medical Image Analysis | 2018
Hongbo Wu; Parham Rasoulinejad; Shuo Li
HighlightsAn effective end‐to‐end method of automated quantitative spinal curvature estimation for comprehensive AIS assessment.A brand‐new convolutional layer for effective multi‐view feature learning.A novel objective function and training algorithm for efficient multi‐task learning. ABSTRACT Automated quantitative estimation of spinal curvature is an important task for the ongoing evaluation and treatment planning of Adolescent Idiopathic Scoliosis (AIS). It solves the widely accepted disadvantage of manual Cobb angle measurement (time‐consuming and unreliable) which is currently the gold standard for AIS assessment. Attempts have been made to improve the reliability of automated Cobb angle estimation. However, it is very challenging to achieve accurate and robust estimation of Cobb angles due to the need for correctly identifying all the required vertebrae in both Anterior‐posterior (AP) and Lateral (LAT) view x‐rays. The challenge is especially evident in LAT x‐ray where occlusion of vertebrae by the ribcage occurs. We therefore propose a novel Multi‐View Correlation Network (MVC‐Net) architecture that can provide a fully automated end‐to‐end framework for spinal curvature estimation in multi‐view (both AP and LAT) x‐rays. The proposed MVC‐Net uses our newly designed multi‐view convolution layers to incorporate joint features of multi‐view x‐rays, which allows the network to mitigate the occlusion problem by utilizing the structural dependencies of the two views. The MVC‐Net consists of three closely‐linked components: (1) a series of X‐modules for joint representation of spinal structure (2) a Spinal Landmark Estimator network for robust spinal landmark estimation, and (3) a Cobb Angle Estimator network for accurate Cobb Angles estimation. By utilizing an iterative multi‐task training algorithm to train the Spinal Landmark Estimator and Cobb Angle Estimator in tandem, the MVC‐Net leverages the multi‐task relationship between landmark and angle estimation to reliably detect all the required vertebrae for accurate Cobb angles estimation. Experimental results on 526 x‐ray images from 154 patients show an impressive 4.04° Circular Mean Absolute Error (CMAE) in AP Cobb angle and 4.07° CMAE in LAT Cobb angle estimation, which demonstrates the MVC‐Nets capability of robust and accurate estimation of Cobb angles in multi‐view x‐rays. Our method therefore provides clinicians with a framework for efficient, accurate, and reliable estimation of spinal curvature for comprehensive AIS assessment.
The Spine Journal | 2017
Timothy L. Lasswell; Duane S. Cronin; John B. Medley; Parham Rasoulinejad
BACKGROUND CONTEXT Predicting physiological range of motion (ROM) using a finite element (FE) model of the upper cervical spine requires the incorporation of ligament laxity. The effect of ligament laxity can be observed only on a macro level of joint motion and is lost once ligaments have been dissected and preconditioned for experimental testing. As a result, although ligament laxity values are recognized to exist, specific values are not directly available in the literature for use in FE models. PURPOSE The purpose of the current study is to propose an optimization process that can be used to determine a set of ligament laxity values for upper cervical spine FE models. Furthermore, an FE model that includes ligament laxity is applied, and the resulting ROM values are compared with experimental data for physiological ROM, as well as experimental data for the increase in ROM when a Type II odontoid fracture is introduced. DESIGN/SETTING The upper cervical spine FE model was adapted from a 50th percentile male full-body model developed with the Global Human Body Models Consortium (GHBMC). FE modeling was performed in LS-DYNA and LS-OPT (Livermore Software Technology Group) was used for ligament laxity optimization. METHODS Ordinate-based curve matching was used to minimize the mean squared error (MSE) between computed load-rotation curves and experimental load-rotation curves under flexion, extension, and axial rotation with pure moment loads from 0 to 3.5 Nm. Lateral bending was excluded from the optimization because the upper cervical spine was considered to be primarily responsible for flexion, extension, and axial rotation. Based on recommendations from the literature, four varying inputs representing laxity in select ligaments were optimized to minimize the MSE. Funding was provided by the Natural Sciences and Engineering Research Council of Canada as well as GHMBC. The present study was funded by the Natural Sciences and Engineering Research Council of Canada to support the work of one graduate student. There are no conflicts of interest to be reported. RESULTS The MSE was reduced to 0.28 in the FE model with optimized ligament laxity compared with an MSE 0f 4.16 in the FE model without laxity. In all load cases, incorporating ligament laxity improved the agreement between the ROM of the FE model and the ROM of the experimental data. The ROM for axial rotation and extension was within one standard deviation of the experimental data. The ROM for flexion and lateral bending was outside one standard deviation of the experimental data, but a compromise was required to use one set of ligament laxity values to achieve a best fit to all load cases. Atlanto-occipital motion was compared as a ratio to overall ROM, and only in extension did the inclusion of ligament laxity not improve the agreement. After a Type II odontoid fracture was incorporated into the model, the increase in ROM was consistent with experimental data from the literature. CONCLUSIONS The optimization approach used in this study provided values for ligament laxities that, when incorporated into the FE model, generally improved the ROM response when compared with experimental data. Successfully modeling a Type II odontoid fracture showcased the robustness of the FE model, which can now be used in future biomechanics studies.
Clinical Trials in Orthopedic Disorders | 2017
Supriya Singh; JenniferC Urquhart; ChristopherS Bailey; Parham Rasoulinejad
This review article summarizes the results of currently available literature on use of incisional negative pressure wound therapy for primary closure of orthopedic incisions. Post-operative wound complications place a heavy toll on patients and the health care system. Patients with post-operative wound complications often require readmission, repeat surgery, prolonged hospitalization, and diminished outcomes. The financial burden on the health care system for surgical site infection, the most common post-operative wound complication, varies from
The Spine Journal | 2018
Parham Rasoulinejad
27,969 to over
Journal of Neurosurgery | 2017
Ingrid Radovanovic; Jennifer C. Urquhart; Parham Rasoulinejad; Kevin R. Gurr; Fawaz Siddiqi
100,000 per patient, representing a nearly 300% increase in health care costs.The role of incisional negative pressure wound therapy is currently being investigated in reducing post-operative wound complications. However, the subject is still novel and based on our literature search, only 11 papers discuss the role of incisional negative pressure wound therapy in orthopedic surgery, with only one paper providing level 1 evidence. However, despite the paucity of sufficient clinical trials, it appears that most reports suggest positive outcomes with use of negative pressure wound therapy.