Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Parichat Prachaney is active.

Publication


Featured researches published by Parichat Prachaney.


Hypertension Research | 2012

Tetrahydrocurcumin alleviates hypertension, aortic stiffening and oxidative stress in rats with nitric oxide deficiency.

Saowanee Nakmareong; Upa Kukongviriyapan; Poungrat Pakdeechote; Veerapol Kukongviriyapan; Bunkerd Kongyingyoes; Wanida Donpunha; Parichat Prachaney; Chada Phisalaphong

Tetrahydrocurcumin (THC), a major metabolite of curcumin, possesses strong antioxidant and cardioprotective properties. However, the activities of THC in hypertension and its associated complications remain unknown. The aim of this study was to investigate the effect of THC on hemodynamic status, aortic elasticity and oxidative stress in rats with N-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. Hypertension was induced in male Sprague-Dawley rats by administration of L-NAME (50 mg kg−1 body weight) in drinking water for 5 weeks. THC at a dose of 50 or 100 mg kg−1 per day was administered daily during the fourth and fifth weeks when the hypertensive state had been established. The effects of THC on hemodynamics, aortic elasticity, endothelial nitric oxide synthase (eNOS) protein expression and oxidative stress markers were assessed. Marked increases in blood pressure, peripheral vascular resistance, aortic stiffness and oxidative stress were found in rats after L-NAME administration. THC significantly reversed these deleterious effects by reducing aortic wall thickness and stiffness. These effects were associated with increased aortic eNOS expression, elevated plasma nitrate/nitrite, decreased oxidative stress with reduced superoxide production and enhanced blood glutathione. Our results provide the first evidence that THC attenuates the detrimental effect of L-NAME by improving the hemodynamic status and aortic elasticity concomitant with reduction of oxidative stress. The present study suggests that THC might be used as a dietary supplement to protect against cardiovascular alterations under nitric oxide-deficient conditions.


Nutrients | 2014

Asiatic Acid Alleviates Hemodynamic and Metabolic Alterations via Restoring eNOS/iNOS Expression, Oxidative Stress, and Inflammation in Diet-Induced Metabolic Syndrome Rats

Poungrat Pakdeechote; Sarawoot Bunbupha; Upa Kukongviriyapan; Parichat Prachaney; Wilaiwan Khrisanapant; Veerapol Kukongviriyapan

Asiatic acid is a triterpenoid isolated from Centella asiatica. The present study aimed to investigate whether asiatic acid could lessen the metabolic, cardiovascular complications in rats with metabolic syndrome (MS) induced by a high-carbohydrate, high-fat (HCHF) diet. Male Sprague-Dawley rats were fed with HCHF diet with 15% fructose in drinking water for 12 weeks to induce MS. MS rats were treated with asiatic acid (10 or 20 mg/kg/day) or vehicle for a further three weeks. MS rats had an impairment of oral glucose tolerance, increases in fasting blood glucose, serum insulin, total cholesterol, triglycerides, mean arterial blood pressure, heart rate, and hindlimb vascular resistance; these were related to the augmentation of vascular superoxide anion production, plasma malondialdehyde and tumor necrosis factor-alpha (TNF-α) levels (p < 0.05). Plasma nitrate and nitrite (NOx) were markedly high with upregulation of inducible nitric oxide synthase (iNOS) expression, but dowregulation of endothelial nitric oxide synthase (eNOS) expression (p < 0.05). Asiatic acid significantly improved insulin sensitivity, lipid profiles, hemodynamic parameters, oxidative stress markers, plasma TNF-α, NOx, and recovered abnormality of eNOS/iNOS expressions in MS rats (p < 0.05). In conclusion, asiatic acid improved metabolic, hemodynamic abnormalities in MS rats that could be associated with its antioxidant, anti-inflammatory effects and recovering regulation of eNOS/iNOS expression.


Nitric Oxide | 2014

Curcumin improves endothelial dysfunction and vascular remodeling in 2K-1C hypertensive rats by raising nitric oxide availability and reducing oxidative stress.

Orachorn Boonla; Upa Kukongviriyapan; Poungrat Pakdeechote; Veerapol Kukongviriyapan; Patchareewan Pannangpetch; Parichat Prachaney; Stephen E. Greenwald

Oxidative stress plays a role in maintaining high arterial blood pressure and contributes to the vascular changes that lead to hypertension. Consumption of polyphenol-rich foods has demonstrated their beneficial role in the prevention and treatment of hypertension. Curcumin (CUR), a phenolic compound present in the rhizomes of turmeric, possesses cardiovascular protective, anti-inflammatory and antioxidant properties. The present study was designed to investigate the protective effect of CUR on 2kidney-1clip (2K-1C)-induced hypertension, endothelial dysfunction, vascular remodeling and oxidative stress in male Sprague-Dawley rats. Sham operated or 2K-1C rats were treated with CUR at a dose of 50 or 100 mg/kg/day (or vehicle). After 6 weeks of treatment, CUR ameliorated hemodynamic performance in 2K-1C hypertensive rats (P< 0.05), by reducing blood pressure, increasing hindlimb blood flow and decreasing hindlimb vascular resistance. Hemodynamic restoration was associated with a reduction in plasma angiotensin converting enzyme level. Endothelium-dependent vasorelaxation, in response to acetylcholine, of aortic rings isolated from 2K-1C hypertensive rats-treated with CUR was significantly increased (P< 0.05). CUR also attenuated hypertension-induced oxidative stress and vascular structural modifications. These effects were associated with elevated plasma nitrate/nitrite, upregulated eNOS expression, downregulated p47phox NADPH oxidase and decreased superoxide production in the vascular tissues. The overall findings of this study suggest the mechanisms responsible for the antihypertensive action of CUR in 2K-1C hypertension-induced endothelial dysfunction and vascular remodeling involve the improvement NO bioavailability and a reduction in oxidative stress.


Nutrients | 2015

Ferulic Acid Alleviates Changes in a Rat Model of Metabolic Syndrome Induced by High-Carbohydrate, High-Fat Diet

K Senaphan; Upa Kukongviriyapan; Weerapon Sangartit; Poungrat Pakdeechote; Patchareewan Pannangpetch; Parichat Prachaney; Stephen E. Greenwald; Kukongviriyapan

Metabolic syndrome is a cluster of metabolic abnormalities characterized by obesity, insulin resistance, hypertension and dyslipidemia. Ferulic acid (FA) is the major phenolic compound found in rice oil and various fruits and vegetables. In this study, we examined the beneficial effects of FA in minimizing insulin resistance, vascular dysfunction and remodeling in a rat model of high-carbohydrate, high-fat diet-induced metabolic changes, which is regarded as an analogue of metabolic syndrome (MS) in man. Male Sprague-Dawley rats were fed a high carbohydrate, high fat (HCHF) diet and 15% fructose in drinking water for 16 weeks, where control rats were fed with standard chow diet and tap water. FA (30 or 60 mg/kg) was orally administered to the HCHF and control rats during the last six weeks of the study. We observed that FA significantly improved insulin sensitivity and lipid profiles, and reduced elevated blood pressure, compared to untreated controls (p < 0.05). Moreover, FA also improved vascular function and prevented vascular remodeling of mesenteric arteries. The effects of FA in HCHF-induced MS may be realized through suppression of oxidative stress by down-regulation of p47phox, increased nitric oxide (NO) bioavailability with up-regulation of endothelial nitric oxide synthase (eNOS) and suppression of tumor necrosis factor-α (TNF-α). Our results suggest that supplementation of FA may have health benefits by minimizing the cardiovascular complications of MS and alleviating its symptoms.


Phytotherapy Research | 2014

Asiatic Acid Reduces Blood Pressure by Enhancing Nitric Oxide Bioavailability with Modulation of eNOS and p47phox Expression in l-NAME-induced Hypertensive Rats

Sarawoot Bunbupha; Poungrat Pakdeechote; Upa Kukongviriyapan; Parichat Prachaney; Veerapol Kukongviriyapan

We investigated the effect of asiatic acid (AA) on hemodynamic status, vascular function, oxidative stress markers, endothelial nitric oxide synthase (eNOS), and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit expression in Nω‐nitro‐l‐arginine methyl ester hydrochloride (l‐NAME)‐induced hypertensive rats. Male Sprague–Dawley rats treated with l‐NAME (40 mg/kg/day) in drinking water for 5 weeks showed significant increases in mean arterial pressure, heart rate, hindlimb vascular resistance, vascular dysfunction, superoxide anion (O2•−) production, and plasma malondialdehyde. Moreover, NO metabolite (NOx) levels were reduced, aortic eNOS expression was downregulated, and NADPH oxidase subunit p47phox was upregulated in hypertensive rats (p < 0.05). Hypertensive rats that were administered AA (10 or 20 mg/kg/day) for the last 2 weeks of the study showed significant improvement in hemodynamic status and vascular function. The antihypertensive effects of AA were associated with elevated plasma NOx levels, together with upregulation of eNOS expression. Decreased vascular O2•− production, consistent with downregulation of p47phox expression, was also observed after AA treatment. Our results are therefore consistent with a model whereby AA reduces blood pressure by enhancing NO bioavailability. Copyright


Clinical and Experimental Pharmacology and Physiology | 2015

Asiatic acid alleviates cardiovascular remodelling in rats with L-NAME-induced hypertension.

Sarawoot Bunbupha; Parichat Prachaney; Upa Kukongviriyapan; Veerapol Kukongviriyapan; Jariya Umka Welbat; Poungrat Pakdeechote

A previous study demonstrated the antihypertensive effect of asiatic acid. The current study investigates the effect of asiatic acid on cardiovascular remodelling and possible mechanisms involved in Nω‐nitro‐L‐arginine methyl ester hydrochloride (L‐NAME)‐induced hypertensive rats. Male Sprague–Dawley rats were treated with L‐NAME (40 mg/kg per day) for 3 weeks in order to induce hypertension. Hypertensive rats were administered asiatic acid (20 mg/kg per day) or vehicle for a further 2 weeks. It was found that hypertensive rats showed high systolic blood pressure, left ventricular (LV) hypertrophy, increases in LV fibrosis, aortic wall thickness and aortic collagen deposition (P < 0.05). Moreover, decreased plasma nitrate and nitrite (NOx) and increased plasma tumor necrosis factor alpha (TNF‐α) were observed in hypertensive rats (P < 0.05). This was consistent with downregulation of endothelial nitric oxide synthase (eNOS) expression and upregulation of inducible nitric oxide synthase (iNOS) expression in heart and aortic tissues (P < 0.05). Levels of malondialdehyde (MDA) in plasma, aortic and heart tissues were significantly increased in hypertensive rats (P < 0.05). Asiatic acid markedly reduced blood pressure, alleviated cardiovascular remodelling, and restored plasma NOx and TNF‐α as well as eNOS/iNOS expression in heart and aortic tissues (P < 0.05). Additionally, there was a significant reduction of MDA levels in the tissues of treated hypertensive rats. In conclusion, this study demonstrates the therapeutic effects of asiatic acid on blood pressure and cardiovascular remodelling, which is possibly related to the restoration of eNOS/iNOS expression, and the resulting anti‐inflammatory and antioxidant activities.


Nutrients | 2015

Ellagic Acid Prevents L-NAME-Induced Hypertension via Restoration of eNOS and p47phox Expression in Rats

Thewarid Berkban; Pattanapong Boonprom; Sarawoot Bunbupha; Jariya Umka Welbat; Upa Kukongviriyapan; Veerapol Kukongviriyapan; Poungrat Pakdeechote; Parichat Prachaney

The effect of ellagic acid on oxidative stress and hypertension induced by Nω-Nitro-l-arginine methyl ester hydrochloride (L-NAME) was investigated. Male Sprague-Dawley rats were administrated with L-NAME (40 mg/kg/day) for five weeks. L-NAME induced high systolic blood pressure (SBP) and increased heart rate (HR), hindlimb vascular resistance (HVR) and oxidative stress. Concurrent treatment with ellagic acid (7.5 or 15 mg/kg) prevented these alterations. Co-treatment with ellagic acid was associated with up-regulation of endothelial nitric oxide synthase (eNOS) protein production and alleviation of oxidative stress as indicated by decreased superoxide production in the vascular tissue, reduced plasma malondialdehyde levels, reduced NADPH oxidase subunit p47phox expression and increased plasma nitrate/nitrite levels. Our results indicate that ellagic acid attenuates hypertension by reducing NADPH oxidase subunit p47phox expression, which prevents oxidative stress and restores NO bioavailability.


Nutrients | 2016

Asiatic Acid Prevents the Deleterious Effects of Valproic Acid on Cognition and Hippocampal Cell Proliferation and Survival

Jariya Umka Welbat; Apiwat Sirichoat; Wunnee Chaijaroonkhanarak; Parichat Prachaney; Wanassanun Pannangrong; Poungrat Pakdeechote; Bungorn Sripanidkulchai; Peter Wigmore

Valproic acid (VPA) is commonly prescribed as an anticonvulsant and mood stabilizer used in the treatment of epilepsy and bipolar disorder. A recent study has demonstrated that VPA reduces histone deacetylase (HDAC) activity, an action which is believed to contribute to the effects of VPA on neural stem cell proliferation and differentiation which may explain the cognitive impairments produced in rodents and patients. Asiatic acid is a triterpenoid derived from the medicinal plant Centella asiatica. Our previous study has shown that Asiatic acid improves working spatial memory and increases cell proliferation in the sub granular zone of the hippocampal dentate gyrus. In the present study we investigate the effects of Asiatic acid in preventing the memory and cellular effects of VPA. Male Spraque-Dawley rats were orally administered Asiatic acid (30 mg/kg/day) for 28 days, while VPA-treated animals received injections of VPA (300 mg/kg) twice a day from Day 15 to Day 28 for 14 days. Spatial memory was determined using the novel object location (NOL) test and hippocampal cell proliferation and survival was quantified by immuostaining for Ki-67 and Bromodeoxyuridine (BrdU), respectively. The results showed that VPA-treated animals were unable to discriminate between objects in familiar and novel locations. Moreover, VPA significantly reduced numbers of Ki-67 and BrdU positive cells. These results indicate that VPA treatment caused impairments of spatial working memory, cell proliferation and survival in the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). However, these abnormalities were restored to control levels by co-treatment with Asiatic acid. These data demonstrate that Asiatic acid could prevent the spatial memory and neurogenesis impairments caused by VPA.


Nutrients | 2015

Effects of Asiatic Acid on Spatial Working Memory and Cell Proliferation in the Adult Rat Hippocampus

Apiwat Sirichoat; Wunnee Chaijaroonkhanarak; Parichat Prachaney; Wanassanan Pannangrong; Ratana Leksomboon; Amnart Chaichun; Peter Wigmore; Jariya Umka Welbat

Asiatic acid is a pentacyclic triterpene from Centella asiatica. Previous studies have reported that asiatic acid exhibits antioxidant and neuroprotective activities in cell culture. It also prevents memory deficits in animal models. The objective of this study was to investigate the relationship between spatial working memory and changes in cell proliferation within the hippocampus after administration of asiatic acid to male Spraque-Dawley rats. Control rats received vehicle (propylene glycol) while treated rats received asiatic acid (30 mg/kg) orally for 14 or 28 days. Spatial memory was determined using the novel object location (NOL) test. In animals administered asiatic acid for both 14 and 28 days, the number of Ki-67 positive cells in the subgranular zone of the dentate gyrus was significantly higher than in control animals. This was associated with a significant increase in their ability to discriminate between novel and familiar object locations in a novel object discrimination task, a hippocampus-dependent spatial memory test. Administration of asiatic acid also significantly increased doublecortin (DCX) and Notch1 protein levels in the hippocampus. These findings demonstrate that asiatic acid treatment may be a potent cognitive enhancer which improves hippocampal-dependent spatial memory, likely by increasing hippocampal neurogenesis.


Nutrients | 2016

Synergistic Antihypertensive Effect of Carthamus tinctorius L. Extract and Captopril in l-NAME-Induced Hypertensive Rats via Restoration of eNOS and AT1R Expression

Putcharawipa Maneesai; Patoomporn Prasarttong; Sarawoot Bunbupha; Upa Kukongviriyapan; Veerapol Kukongviriyapan; Panot Tangsucharit; Parichat Prachaney; Poungrat Pakdeechote

This study examined the effect of Carthamus tinctorius (CT) extract plus captopril treatment on blood pressure, vascular function, nitric oxide (NO) bioavailability, oxidative stress and renin-angiotensin system (RAS) in Nω-Nitro-l-arginine methyl ester (l-NAME)-induced hypertension. Rats were treated with l-NAME (40 mg/kg/day) for five weeks and given CT extract (75 or 150 or 300 or 500 mg/kg/day): captopril (5 mg/kg/day) or CT extract (300 mg/kg/day) plus captopril (5 mg/kg/day) for two consecutive weeks. CT extract reduced blood pressure dose-dependently, and the most effective dose was 300 mg/kg/day. l-NAME-induced hypertensive rats showed abnormalities including high blood pressure, high vascular resistance, impairment of acetylcholine-induced vasorelaxation in isolated aortic rings and mesenteric vascular beds, increased vascular superoxide production and plasma malondialdehyde levels, downregulation of eNOS, low level of plasma nitric oxide metabolites, upregulation of angiotensin II type 1 receptor and increased plasma angiotensin II. These abnormalities were alleviated by treatment with either CT extract or captopril. Combination treatment of CT extract and captopril normalized all the abnormalities found in hypertensive rats except endothelial dysfunction. These data indicate that there are synergistic antihypertensive effects of CT extract and captopril. These effects are likely mediated by their anti-oxidative properties and their inhibition of RAS.

Collaboration


Dive into the Parichat Prachaney's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge