Parntep Ratanakorn
Mahidol University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Parntep Ratanakorn.
Emerging Infectious Diseases | 2004
Juthatip Keawcharoen; Kanisak Oraveerakul; Thijs Kuiken; Ron A. M. Fouchier; Alongkorn Amonsin; Sunchai Payungporn; Suwanna Noppornpanth; Sumitra Wattanodorn; Apiradee Theamboonlers; Rachod Tantilertcharoen; Rattapan Pattanarangsan; Nlin Arya; Parntep Ratanakorn; Albert D. M. E. Osterhaus; Yong Poovorawan
Influenza virus is not known to affect wild felids. We demonstrate that avian influenza A (H5N1) virus caused severe pneumonia in tigers and leopards that fed on infected poultry carcasses. This finding extends the host range of influenza virus and has implications for influenza virus epidemiology and wildlife conservation.
The Journal of Infectious Diseases | 2009
Thanawat Tiensin; Syed Sayeem Uddin Ahmed; Suvichai Rojanasthien; Thaweesak Songserm; Parntep Ratanakorn; Kridsada Chaichoun; Wantanee Kalpravidh; Surapong Wongkasemjit; Tuangthong Patchimasiri; Karoon Chanachai; Weerapong Thanapongtham; Suwit Chotinan; Arjan Stegeman; M. Nielen
This study was conducted to investigate space and time clusters of highly pathogenic avian influenza A (H5N1) virus infection and to determine risk factors at the subdistrict level in Thailand. Highly pathogenic avian influenza A (H5N1) was diagnosed in 1890 poultry flocks located in 953 subdistricts during 2004-2007. The ecologic risk for H5N1 virus infection was assessed on the basis of a spatial-based case-control study involving 824 case subdistricts and 3296 control subdistricts from 6 study periods. Risk factors investigated in clustered areas of H5N1 included human and animal demographic characteristics, poultry production systems, and wild birds and their habitats. Six variables remained statistically significant in the final model: flock density of backyard chickens (odds ratio [OR], 0.98), flock density of fighting cocks (OR, 1.02), low and high human density (OR, 0.60), presence of quail flocks (OR, 1.21), free-grazing duck flocks (OR, 2.17), and a poultry slaughterhouse (OR, 1.33). We observed a strong association between subdistricts with H5N1 virus-infected poultry flocks and evidence of prior and concomitant H5N1 infection in wild birds in the same subdistrict.
Journal of Wildlife Diseases | 2009
Jarunee Siengsanan; Kridsada Chaichoune; Rassameepen Phonaknguen; Ladawan Sariya; Phirom Prompiram; Waraporn Kocharin; Sririporn Tangsudjai; Sarin Suwanpukdee; Witthawat Wiriyarat; Rattapan Pattanarangsan; I.D. Robertson; Stuart D. Blacksell; Parntep Ratanakorn
Wild bird surveillance for highly pathogenic avian influenza (HPAI) H5N1 virus from 2004 to 2007 in Thailand indicated that the prevalence of infection with avian influenza H5N1 virus in wild birds was low (1.0%, 95% confidence interval [CI]: 0.7–1.2, 60/6,263 pooled samples). However, the annual prevalence varied considerably over this period, with a peak of 2.7% (95% CI: 1.4, 4.1) in 2004. Prevalence dropped to 0.5% (95% CI: 0.3, 0.8]) and 0.6% (95% CI: 0.3, 1.0) in 2005 and 2006, respectively, and then increased to 1.8% (95% CI: 1.0, 2.6) in 2007. During this period, 16 species from 12 families of wild birds tested positive for H5N1 virus infection. All samples from juvenile birds were negative for H5N1 virus, whereas 0.6% (95% CI: 0.4, 0.9) of pooled samples from adult birds were positive. Most positive samples originated from peridomestic resident species. Infected wild bird samples were only found in provinces where poultry outbreaks had occurred. Detection of H5N1 virus infection in wild birds was reported up to 3 yr after eradication of the poultry outbreaks in those provinces. As observed with outbreaks in poultry, the frequencies of H5N1 outbreaks in wild birds were significantly higher in winter. Further understanding of the mechanisms of persistence and ongoing HPAI H5N1 transmission between wild birds and domestic poultry is needed.
Virus Research | 2008
Yuko Uchida; Kridsada Chaichoune; Witthawat Wiriyarat; Chiaki Watanabe; Tsuyoshi Hayashi; Tuangthong Patchimasiri; Bandit Nuansrichay; Sujira Parchariyanon; Masatoshi Okamatsu; Kenji Tsukamoto; Nobuhiro Takemae; Parntep Ratanakorn; Shigeo Yamaguchi; Takehiko Saito
A comprehensive molecular epidemiological analysis was performed on highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype derived from poultry and wild bird during 2004-2007 in Thailand. Sequence analysis followed by phylogenetic analysis was applied to all eight segments of the viruses. Viruses belonging to clades 1 and 2.3.4 in the HA phylogenetic tree have been shown to circulate in Thailand. Our analysis revealed differential evolution of the HPAI viruses among clade 1 strains. Isolates from Phichit province in 2006 resided in two distinct branches, designated 1.p1 and 1.p2. A hemagglutination inhibition test with a panel of monoclonal antibodies demonstrated a possible antigenic drift between the Phichit isolates. Involvement of free-grazing duck practice in the area was discussed as a cause of the differential evolution among the Phichit isolates. A branch, designated 1-TGWB and consisting exclusively of isolates from zoological tigers and wild birds, was evident in all phylogenetic trees constructed in the study. The branchs existence indicated that the HPAI viruses could have been maintained in the wild bird population for a certain period, although no involvement of wild birds in HPAI transmission to poultry was evident in this study.
Journal of General Virology | 2009
Kridsada Chaichoune; Witthawat Wiriyarat; Arunee Thitithanyanont; Rassameepen Phonarknguen; Ladawan Sariya; Sarin Suwanpakdee; Thanom Noimor; Sunisa Chatsurachai; Prapat Suriyaphol; Kumnuan Ungchusak; Parntep Ratanakorn; Robert G. Webster; Mekkla Thompson; Prasert Auewarakul; Pilaipan Puthavathana
Outbreaks of H5N1 avian influenza show strong seasonality. It is not clear where the source of virus originates from in each new outbreak season. This study sought to understand the nature of viral resurgence in recent outbreak seasons in Thailand, where the epidemic is relatively well controlled. In such a situation, indigenous viruses surviving the inter-outbreak season would have to pass through a bottleneck. In order to look for evidence of the bottleneck effect, viral genome sequences from recent outbreaks in the country were analysed. H5N1 avian influenza viruses were isolated from six outbreaks in the rainy season and winter of 2007 through to early 2008. Most of the outbreaks were in the Yom-Nan River basin in the southern part of the northern region of the country. Sequences of these viral isolates were identified as clade 1, genotype Z, similar to viruses from previous years in the central region of the country. The sequences clustered into two groups, one of which was closely related to viruses isolated from the same area in July 2006. These analyses indicated that there was a strong bottleneck effect on the virus population and that only a few lineages remained in the area. In addition, evidence of reassortment among these viruses was found. These indicated re-emergence of viruses from a small pool of indigenous sources that had been silently perpetuated over the dry summer months. Therefore, an approach to eradicate H5N1 avian influenza from the area by eliminating these local reservoirs may be feasible and should be seriously considered.
PLOS ONE | 2011
Tsuyoshi Hayashi; Yasuaki Hiromoto; Kridsada Chaichoune; Tuangthong Patchimasiri; Warunya Chakritbudsabong; Natanan Prayoonwong; Natnapat Chaisilp; Witthawat Wiriyarat; Sujira Parchariyanon; Parntep Ratanakorn; Yuko Uchida; Takehiko Saito
Highly pathogenic avian influenza virus (HPAIV) of the H5N1 subtype has been reported to infect pigeons asymptomatically or induce mild symptoms. However, host immune responses of pigeons inoculated with HPAIVs have not been well documented. To assess host responses of pigeons against HPAIV infection, we compared lethality, viral distribution and mRNA expression of immune related genes of pigeons infected with two HPAIVs (A/Pigeon/Thailand/VSMU-7-NPT/2004; Pigeon04 and A/Tree sparrow/Ratchaburi/VSMU-16-RBR/2005; T.sparrow05) isolated from wild birds in Thailand. The survival experiment showed that 25% of pigeons died within 2 weeks after the inoculation of two HPAIVs or medium only, suggesting that these viruses did not cause lethal infection in pigeons. Pigeon04 replicated in the lungs more efficiently than T.sparrow05 and spread to multiple extrapulmonary organs such as the brain, spleen, liver, kidney and rectum on days 2, 5 and 9 post infection. No severe lesion was observed in the lungs infected with Pigeon04 as well as T.sparrow05 throughout the collection periods. Encephalitis was occasionally observed in Pigeon04- or T.sparrow05-infected brain, the severity, however was mostly mild. To analyze the expression of immune-related genes in the infected pigeons, we established a quantitative real-time PCR analysis for 14 genes of pigeons. On day 2 post infection, Pigeon04 induced mRNA expression of Mx1, PKR and OAS to a greater extent than T.sparrow05 in the lungs, however their expressions were not up-regulated concomitantly on day 5 post infection when the peak viral replication was observed. Expressions of TLR3, IFNα, IL6, IL8 and CCL5 in the lungs following infection with the two HPAIVs were low. In sum, Pigeon04 exhibited efficient replication in the lungs compared to T.sparrow05, but did not induce excessive host cytokine expressions. Our study has provided the first insight into host immune responses of pigeons against HPAIV infection.
Journal of Zoo and Wildlife Medicine | 2012
Anuwat Wiratsudakul; Ladawan Sariya; Phirom Prompiram; Siriporn Tantawet; Duangkhamol Suraruangchai; Poonyapat Sedwisai; Nareerat Sangkachai; Parut Suksai; Parntep Ratanakorn
Hepatitis E virus (HEV) was studied in different types of wild boar captive settings in Thailand, including a wildlife breeding research station, zoo, and commercial wild boar farm, which were located in different locations of Thailand. Fifty-one fecal samples were collected and screened for HEV RNA and then analyzed. One sample obtained from a wildlife breeding research station in Ratchaburi province was HEV positive. Phylogenetic characterization revealed that the virus was HEV genotype 3 and belongs to subgroup 3e, which is closely related to HEV recently isolated from domestic pigs and humans in the country. It was hypothesized that HEV is shared among wild boars, domestic pigs, and humans in Thailand.
Journal of Medical Primatology | 2008
Pattaratida Sa-nguanmoo; Chittima Thongmee; Parntep Ratanakorn; Rattapan Pattanarangsan; Roschong Boonyarittichaikij; Somchai Chodapisitkul; Apiradee Theamboonlers; Pisit Tangkijvanich; Yong Poovorawan
Background Hepatitis B virus (HBV) is a public health problem worldwide and apart from infecting humans, HBV has been found in non‐human primates.
Veterinary Microbiology | 2011
J. Siengsanan-Lamont; I.D. Robertson; Stuart D. Blacksell; Trevor M. Ellis; Stan Fenwick; S. Saengchoowong; S. Suwanpukdee; P. Yongyuttawichai; Ladawan Sariya; Phirom Prompiram; K. Chaichoun; Witthawat Wiriyarat; D. Pothieng; Parntep Ratanakorn
A serological and virological surveillance program to investigate the HPAI H5N1 virus in wild bird populations was undertaken from February 2007 to October 2008. The purpose of the survey was to investigate the infection status in free ranging wild birds in Banglane district, Nakhon Pathom province, central Thailand. Samples from wild birds were collected every two months. Choanal and cloacal swabs, serum and tissue samples were collected from 421 birds comprising 44 species. Sero-prevalence of the virus tested by H5N1 serum neutralization test (using a H5N1 virus clade 1; A/chicken/Thailand/vsmu-3-BKK/2004) was 2.1% (8 out of 385 samples; 95% CI 0.7, 3.5). Species that were antibody positive included rock pigeons (Columba livia), Asian pied starling (Gracupica contra), spotted dove (Streptopelia chinensis), oriental magpie robin (Copsychus saularis), blue-tailed bee-eater (Merops philippinus), myna (Acridotheres spp.), and pond heron (Ardeola spp.). Prevalence by H5N1 virus isolation was 0.5% (2 out of 421 samples; 95% CI 0.0, 1.1); the two H5N1 virus-positive samples were from Asian pied starling (Gracupica contra) and white vented myna (Acridotheres grandis). Positive virological samples were collected in June 2007 while all positive serology samples were collected between May and August except for one sample collected in December 2007. No positive samples were collected in 2008. Molecular studies revealed that the wild bird H5N1 viruses were closely related to poultry viruses isolated in other parts of Thailand. However, there was no poultry H5N1 prevalence study performed in the study site during the time of this wild bird survey. Interpretation of source of virus isolates would include spill-over of H5N1 viruses from contaminated sources due to movement of domestic poultry and/or fomites from other areas; or infection of wild birds within the outbreak locations and then translocation by wild bird movement and interaction with wild birds inhabiting distant locations.
Veterinary Microbiology | 2010
Witthawat Wiriyarat; Hatairat Lerdsamran; Phisanu Pooruk; Robert G. Webster; Suda Louisirirotchanakul; Parntep Ratanakorn; Kridsada Chaichoune; Kannika Nateerom; Pilaipan Puthavathana
All 16 subtypes of avian influenza viruses of low pathogenicity (LPAIV) as well as their hemagglutinin (H) antigens, and four 2009 pandemic influenza A (H1N1) virus isolates were assayed for hemagglutinating activity against 5 erythrocyte species: goose, guinea pig, human group O, chicken and horse. Of all viruses and antigens assayed, the highest hemagglutination (HA) titers were obtained with goose and guinea pig erythrocytes. Hemagglutinating activity of replicating LPAIV and LPAIV antigens decreased, in order, with chicken and human group O; meanwhile, horse erythrocytes yielded lowest or no HA titer. Moreover, the 2009 pandemic viruses did not agglutinate both horse and chicken erythrocytes. Our study concluded that goose and guinea pig erythrocytes are the best in HA assay for all subtypes of influenza viruses.