Parrish Brady
University of Texas at Austin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Parrish Brady.
Journal of the Royal Society Interface | 2009
Ainsley E. Seago; Parrish Brady; Jean-Pol Vigneron; Tom D. Schultz
Members of the order Coleoptera are sometimes referred to as ‘living jewels’, in allusion to the strikingly diverse array of iridescence mechanisms and optical effects that have arisen in beetles. A number of novel and sophisticated reflectance mechanisms have been discovered in recent years, including three-dimensional photonic crystals and quasi-ordered coherent scattering arrays. However, the literature on beetle structural coloration is often redundant and lacks synthesis, with little interchange between the entomological and optical research communities. Here, an overview is provided for all iridescence mechanisms observed in Coleoptera. Types of iridescence are illustrated and classified into three mechanistic groups: multilayer reflectors, three-dimensional photonic crystals and diffraction gratings. Taxonomic and phylogenetic distributions are provided, along with discussion of the putative functions and evolutionary pathways by which iridescence has repeatedly arisen in beetles.
The American Naturalist | 2010
Parrish Brady
Circularly polarized light is rare in the terrestrial environment, and cuticular reflections from scarab beetles are one of the few natural sources. Chrysina gloriosa LeConte 1854, a scarab beetle found in montane juniper forests of the extreme southwestern United States and northern Mexico, are camouflaged in juniper foliage; however, when viewed with right circularly polarizing filters, the beetles exhibit a stark black contrast. Given the polarization‐specific changes in the appearance of C. gloriosa, we hypothesized that C. gloriosa can detect circularly polarized light. We tested for phototactic response and differential flight orientation of C. gloriosa toward different light stimuli. Chrysina gloriosa exhibited (a) positive phototaxis, (b) differential flight orientation between linear and circularly polarized light stimuli of equal intensities, and (c) discrimination between circularly polarized and unpolarized lights of different intensities consistent with a model of circular polarization sensitivity based on a quarter‐wave plate. These results demonstrate that C. gloriosa beetles respond differentially to circularly polarized light. In contrast, Chrysina woodi Horn 1885, a close relative with reduced circularly polarized reflection, exhibited no phototactic discrimination between linear and circularly polarized light. Circularly polarized sensitivity may allow C. gloriosa to perceive and communicate with conspecifics that remain cryptic to predators, reducing indirect costs of communication.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Parrish Brady; Kort Travis; Tara L. Maginnis
With no object to hide behind in 3D space, the open ocean represents a challenging environment for camouflage. Conventional strategies for reflective crypsis (e.g., standard mirror) are effective against axially symmetric radiance fields associated with high solar altitudes, yet ineffective against asymmetric polarized radiance fields associated with low solar inclinations. Here we identify a biological model for polaro–crypsis. We measured the surface-reflectance Mueller matrix of live open ocean fish (lookdown, Selene vomer) and seagrass-dwelling fish (pinfish, Lagodon rhomboides) using polarization-imaging and modeling polarization camouflage for the open ocean. Lookdowns occupy the minimization basin of our polarization-contrast space, while pinfish and standard mirror measurements exhibit higher contrast values than optimal. The lookdown reflective strategy achieves significant gains in polaro–crypsis (up to 80%) in comparison with nonpolarization sensitive strategies, such as a vertical mirror. Lookdowns achieve polaro–crypsis across solar altitudes by varying reflective properties (described by 16 Mueller matrix elements mij) with incident illumination. Lookdowns preserve reflected polarization aligned with principle axes (dorsal–ventral and anterior–posterior, m22 = 0.64), while randomizing incident polarization 45° from principle axes (m33 = –0.05). These reflectance properties allow lookdowns to reflect the uniform degree and angle of polarization associated with high-noon conditions due to alignment of the principle axes and the sun, and reflect a more complex polarization pattern at asymmetrical light fields associated with lower solar elevations. Our results suggest that polaro–cryptic strategies vary by habitat, and require context-specific depolarization and angle alteration for effective concealment in the complex open ocean environment.
Applied Optics | 2011
Yu You; Alberto Tonizzo; Alexander Gilerson; Parrish Brady; James M. Sullivan; Michael S. Twardowski; Heidi M. Dierssen; Samir Ahmed; George W. Kattawar
Polarization states of the underwater light field were measured by a hyperspectral and multiangular polarimeter and a video polarimeter under various atmospheric, surface, and water conditions, as well as solar and viewing geometries, in clear oceanic waters near Port Aransas, Texas. Some of the first comprehensive comparisons were made between the measured polarized light, including the degree and angle of linear polarization and linear Stokes parameters (Q and U), and those from Monte Carlo simulations that used concurrently measured water inherent optical properties and particle volume scattering functions as input. For selected wavelengths in the visible spectrum, measured and model-simulated polarization characteristics were found to be consistent in most cases. Measured degree and angle of linear polarization are found to be largely determined by an in-water single-scattering model. Model simulations suggest that the degree of linear polarization (DoLP) at horizontal viewing directions is highly dependent on the viewing azimuth angle for a low solar elevation. This implies that animals can use the DoLP signal for orientation.
Science | 2015
Parrish Brady; Alexander Gilerson; George W. Kattawar; James M. Sullivan; Michael S. Twardowski; Heidi M. Dierssen; Meng Gao; Kort Travis; Robert Ian Etheredge; Alberto Tonizzo; Amir Ibrahim; Carlos Carrizo; Yalong Gu; Brandon J. Russell; Kathryn Mislinski; Shulei Zhao
Disappearing act Unlike coastal regions and reefs, the open ocean is mostly empty. Many fish species, nonetheless, spend most of their lives there. Such emptiness makes camouflage exceedingly difficult, so how does an organism hide in water filled with bouncing and reflected light? Brady et al. show that some families of fish have evolved skin that reflects and polarizes light, allowing them to blend into their mirrorlike conditions more easily. These results help to explain the silvery coloration found in sea-living fish across the worlds oceans. Science, this issue p. 965 Light-reflecting and -polarizing platelets in their skin permit fish to blend into the mirrorlike open ocean. Despite appearing featureless to our eyes, the open ocean is a highly variable environment for polarization-sensitive viewers. Dynamic visual backgrounds coupled with predator encounters from all possible directions make this habitat one of the most challenging for camouflage. We tested open-ocean crypsis in nature by collecting more than 1500 videopolarimetry measurements from live fish from distinct habitats under a variety of viewing conditions. Open-ocean fish species exhibited camouflage that was superior to that of both nearshore fish and mirrorlike surfaces, with significantly higher crypsis at angles associated with predator detection and pursuit. Histological measurements revealed that specific arrangements of reflective guanine platelets in the fish’s skin produce angle-dependent polarization modifications for polarocrypsis in the open ocean, suggesting a mechanism for natural selection to shape reflectance properties in this complex environment.
Applied Optics | 2013
Alexander Gilerson; Jan Stepinski; Amir Ibrahim; Yu You; James M. Sullivan; Michael S. Twardowski; Heidi M. Dierssen; Brandon J. Russell; Parrish Brady; Samir Ahmed; George W. Kattawar
Measurements of the upwelling polarized radiance in relatively shallow waters of varying depths and benthic conditions are compared to simulations, revealing the depolarizing nature of the seafloor. The simulations, executed with the software package RayXP, are solutions to the vector radiative transfer equation, which depends on the incident light field and three types of parameters: inherent optical properties, the scattering matrix, and the benthic reflectance. These were measured directly or calculated from measurements with additional assumptions. Specifically, the Lambertian model used to simulate benthic reflectances is something of a simplification of reality, but the bottoms used in this study are found to be crucial for accurate simulations of polarization. Comparisons of simulations with and without bottom contributions show that only the former corroborate measurements of the Stokes components and the degree of linear polarization (DoLP) collected by the polarimeter developed at the City College of New York. Because this polarimeter is multiangular and hyperspectral, errors can be computed point-wise over a large range of scattering angles and wavelengths. Trends also become apparent. DoLP is highly sensitive to the benthic reflectance and to the incident wavelength, peaking in the red band, but the angle of linear polarization is almost spectrally constant and independent of the bottom. These results can thus facilitate the detection of benthic materials as well as future studies of camouflage by benthic biota; to hide underwater successfully, animals must reflect light just as depolarized as that reflected by benthic materials.
Physics of Plasmas | 2009
Parrish Brady; T. Ditmire; W. Horton; M. L. Mays; Yuri P. Zakharov
Magnetosphere-solar wind interactions are simulated in a laboratory setting with a small permanent magnet driven by two types of supersonic plasma wind sources. The first higher speed, shorter duration plasma wind is from a laser blow-off plasma while the second longer duration, lower speed plasma wind is produced with a capacitor discharge driven coaxial electrode creating plasma jets. The stand off distance of the solar wind from the magnetosphere was measured to be 1.7±0.3 cm for the laser-produced plasma experiment and 0.87±0.03 cm for the coaxial electrode plasma experiment. The stand off distance of the plasma was calculated using data from HYADES [J. T. Larsen and S. M. Lane, J. Quant. Spectrosc. Radiat. Transf. 51, 179 (1994)] as 1.46±0.02 cm for the laser-produced plasma, and estimated for the coaxial plasma jet as rmp=0.72±0.07 cm. Plasma build up on the poles of the magnets, consistent with magnetosphere systems, was also observed.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Gina M. Calabrese; Parrish Brady; Viktor Gruev
Significance Polarization, the alignment of light waves in a plane, is a property that many nonhuman animals can detect. Polarized body patterning on some animals has prompted research into polarization as a signaling modality, but experimental evidence is lacking. We found evidence for sexual selection on polarization ornamentation in a swordtail fish: sexually dimorphic polarization patterning with higher polarization contrast in males and females exhibiting a mate preference for this ornamentation. We manipulated male polarization properties in a mate choice experiment and found that females prefer males with polarized over depolarized ornamentation and that males may increase polarization contrast in social environments. Polarization signaling may provide enhanced display detection, along with privatized communication, due to the directional component of polarized light. Polarization of light, and visual sensitivity to it, is pervasive across aquatic and terrestrial environments. Documentation of invertebrate use of polarized light is widespread from navigation and foraging to species recognition. However, studies demonstrating that polarization body patterning serves as a communication signal (e.g., with evidence of changes in receiver behavior) are rare among invertebrate taxa and conspicuously absent among vertebrates. Here, we investigate polarization-mediated communication by northern swordtails, Xiphophorus nigrensis, using a custom-built videopolarimeter to measure polarization signals and an experimental paradigm that manipulates polarization signals without modifying their brightness or color. We conducted mate choice trials in an experimental tank that illuminates a pair of males with light passed through a polarization filter and a diffusion filter. By alternating the order of these filters between males, we presented females with live males that differed in polarization reflectance by >200% but with intensity and color differences below detection thresholds (∼5%). Combining videopolarimetry and polarization-manipulated mate choice trials, we found sexually dimorphic polarized reflectance and polarization-dependent female mate choice behavior with no polarization-dependent courtship behavior by males. Male swordtails exhibit greater within-body and body-to-background polarization contrast than females, and females preferentially associate with high-polarization–reflecting males. We also found limited support that males increase polarization contrast in social conditions over asocial conditions. Polarization cues in mate choice contexts may provide aquatic vertebrates with enhanced detection of specific display features (e.g., movements, angular information), as well as a signaling mechanism that may enhance detection by intended viewers while minimizing detection by others.
Journal of the Royal Society Interface | 2015
Shulei Zhao; Parrish Brady; Meng Gao; Robert Ian Etheredge; George W. Kattawar
Predator evasion in the open ocean is difficult because there are no objects to hide behind. The silvery surface of fish plays an important role in open water camouflage. Various models have been proposed to account for the broadband reflectance by the fish skin that involve one-dimensional variations in the arrangement of guanine crystal reflectors, yet the three-dimensional organization of these guanine platelets have not been well characterized. Here, we report the three-dimensional organization and the optical properties of integumentary guanine platelets in a silvery marine fish, the lookdown (Selene vomer). Our structural analysis and computational modelling show that stacks of guanine platelets with random yaw angles in the fish skin produce broadband reflectance via colour mixing. Optical axes of the guanine platelets and the collagen layer are aligned closely and provide bulk birefringence properties that influence the polarization reflectance by the skin. These data demonstrate how the lookdown preserves or alters polarization states at different incident polarization angles. These optical properties resulted from the organization of these guanine platelets and the collagen layer may have implications for open ocean camouflage in varying light fields.
Applied Optics | 2016
Yalong Gu; Carlos Carrizo; Alexander Gilerson; Parrish Brady; Michael S. Twardowski; James M. Sullivan; Amir Ibrahim; George W. Kattawar
Polarized light fields contain more information than simple irradiance and such capabilities provide an advanced tool for underwater imaging. The concept of the beam spread function (BSF) for analysis of scalar underwater imaging was extended to a polarized BSF which considers polarization. The following studies of the polarized BSF in an underwater environment through Monte Carlo simulations and experiments led to a simplified underwater polarimetric imaging model. With the knowledge acquired in the analysis of the polarimetric imaging formation process of a manmade underwater target with known polarization properties, a method to extract the inherent optical properties of the water and to retrieve polarization characteristics of the target was explored. The proposed method for retrieval of underwater target polarization characteristics should contribute to future efforts to reveal the underlying mechanism of polarization camouflage possessed by marine animals and finally to generalize guidelines for creating engineered surfaces capable of similar polarization camouflage abilities in an underwater environment.