Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Partha P. Das is active.

Publication


Featured researches published by Partha P. Das.


PLOS ONE | 2008

MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis.

Katsuhiko Hayashi; Susana M. Chuva de Sousa Lopes; Masahiro Kaneda; Fuchou Tang; Petra Hajkova; Kaiqin Lao; Dónal O'Carroll; Partha P. Das; Alexander Tarakhovsky; Eric A. Miska; M. Azim Surani

Background MicroRNAs (miRNAs) are critical regulators of transcriptional and post-transcriptional gene silencing, which are involved in multiple developmental processes in many organisms. Apart from miRNAs, mouse germ cells express another type of small RNA, piwi-interacting RNAs (piRNAs). Although it has been clear that piRNAs play a role in repression of retrotransposons during spermatogenesis, the function of miRNA in mouse germ cells has been unclear. Methodology/Principal Findings In this study, we first revealed the expression pattern of miRNAs by using a real-time PCR-based 220-plex miRNA expression profiling method. During development of germ cells, miR-17-92 cluster, which is thought to promote cell cycling, and the ES cell-specific cluster encoding miR-290 to -295 (miR-290-295 cluster) were highly expressed in primordial germ cells (PGCs) and spermatogonia. A set of miRNAs was developmentally regulated. We next analysed function of miRNA biogenesis in germ cell development by using conditional Dicer-knockout mice in which Dicer gene was deleted specifically in the germ cells. Dicer-deleted PGCs and spermatogonia exhibited poor proliferation. Retrotransposon activity was unexpectedly suppressed in Dicer-deleted PGCs, but not affected in the spermatogonia. In Dicer-deleted testis, spermatogenesis was retarded at an early stage when proliferation and/or early differentiation. Additionally, we analysed spermatogenesis in conditional Argonaute2-deficient mice. In contrast to Dicer-deficient testis, spermatogenesis in Argonaute2-deficient testis was indistinguishable from that in wild type. Conclusion/Significance These results illustrate that miRNAs are important for the proliferation of PGCs and spermatogonia, but dispensable for the repression of retrotransposons in developing germ cells. Consistently, miRNAs promoting cell cycling are highly expressed in PGCs and spermatogonia. Furthermore, based on normal spermatogenesis in Argonaute2-deficient testis, the critical function of Dicer in spermatogenesis is independent of Argonaute2.


Molecular Cell | 2008

Piwi and piRNAs Act Upstream of an Endogenous siRNA Pathway to Suppress Tc3 Transposon Mobility in the Caenorhabditis elegans Germline

Partha P. Das; Marloes P. Bagijn; Leonard D. Goldstein; Julie R. Woolford; Nicolas J. Lehrbach; Alexandra Sapetschnig; Heeran R. Buhecha; Michael J. Gilchrist; Kevin L. Howe; Rory Stark; Nik Matthews; Eugene Berezikov; René F. Ketting; Simon Tavaré; Eric A. Miska

The Piwi proteins of the Argonaute superfamily are required for normal germline development in Drosophila, zebrafish, and mice and associate with 24-30 nucleotide RNAs termed piRNAs. We identify a class of 21 nucleotide RNAs, previously named 21U-RNAs, as the piRNAs of C. elegans. Piwi and piRNA expression is restricted to the male and female germline and independent of many proteins in other small-RNA pathways, including DCR-1. We show that Piwi is specifically required to silence Tc3, but not other Tc/mariner DNA transposons. Tc3 excision rates in the germline are increased at least 100-fold in piwi mutants as compared to wild-type. We find no evidence for a Ping-Pong model for piRNA amplification in C. elegans. Instead, we demonstrate that Piwi acts upstream of an endogenous siRNA pathway in Tc3 silencing. These data might suggest a link between piRNA and siRNA function.


Molecular Cell | 2014

Distinct and Combinatorial Functions of Jmjd2b/Kdm4b and Jmjd2c/Kdm4c in Mouse Embryonic Stem Cell Identity

Partha P. Das; Zhen Shao; Semir Beyaz; Eftychia Apostolou; Luca Pinello; Alejandro De Los Angeles; Kassandra O’Brien; Jennifer Marino Atsma; Yuko Fujiwara; Minh Nguyen; Damir Ljuboja; Guoji Guo; Andrew J. Woo; Guo-Cheng Yuan; Tamer T. Onder; George Q. Daley; Jonghwan Kim; Stuart H. Orkin

Self-renewal and pluripotency of embryonic stem cells (ESCs) are established by multiple regulatory pathways operating at several levels. The roles of histone demethylases (HDMs) in these programs are incompletely defined. We conducted a functional RNAi screen for HDMs and identified five potential HDMs essential for mouse ESC identity. In-depth analyses demonstrate that the closely related HDMs Jmjd2b and Jmjd2c are necessary for self-renewal of ESCs and induced pluripotent stem cell generation. Genome-wide occupancy studies reveal that Jmjd2b unique, Jmjd2c unique, and Jmjd2b-Jmjd2c common target sites belong to functionally separable Core, Polycomb repressive complex (PRC), and Myc regulatory modules, respectively. Jmjd2b and Nanog act through an interconnected regulatory loop, whereas Jmjd2c assists PRC2 in transcriptional repression. Thus, two HDMs of the same subclass exhibit distinct and combinatorial functions in control of the ESC state. Such complexity of HDM function reveals an aspect of multilayered transcriptional control.


Nature Genetics | 2017

Variant-aware saturating mutagenesis using multiple Cas9 nucleases identifies regulatory elements at trait-associated loci

Matthew C. Canver; Samuel Lessard; Luca Pinello; Yuxuan Wu; Yann Ilboudo; Emily Stern; Austen J. Needleman; F. Galacteros; Carlo Brugnara; Abdullah Kutlar; Colin A. McKenzie; Marvin Reid; Diane D. Chen; Partha P. Das; Mitchel Alfonza Cole; Jing Zeng; Ryo Kurita; Yukio Nakamura; Guo-Cheng Yuan; Guillaume Lettre; Daniel E. Bauer; Stuart H. Orkin

Cas9-mediated, high-throughput, saturating in situ mutagenesis permits fine-mapping of function across genomic segments. Disease- and trait-associated variants identified in genome-wide association studies largely cluster at regulatory loci. Here we demonstrate the use of multiple designer nucleases and variant-aware library design to interrogate trait-associated regulatory DNA at high resolution. We developed a computational tool for the creation of saturating-mutagenesis libraries with single or multiple nucleases with incorporation of variants. We applied this methodology to the HBS1L-MYB intergenic region, which is associated with red-blood-cell traits, including fetal hemoglobin levels. This approach identified putative regulatory elements that control MYB expression. Analysis of genomic copy number highlighted potential false-positive regions, thus emphasizing the importance of off-target analysis in the design of saturating-mutagenesis experiments. Together, these data establish a widely applicable high-throughput and high-resolution methodology to identify minimal functional sequences within large disease- and trait-associated regions.


Cancer Discovery | 2016

Chronic myelogenous leukemia initiating cells require Polycomb group protein EZH2

Huafeng Xie; Cong Peng; Jialiang Huang; Bin E. Li; Woojin Kim; Elenoe C. Smith; Yuko Fujiwara; Jun Qi; Giulia Cheloni; Partha P. Das; Minh Nguyen; Shaoguang Li; James E. Bradner; Stuart H. Orkin

Tyrosine kinase inhibitors (TKI) have revolutionized chronic myelogenous leukemia (CML) management. Disease eradication, however, is hampered by innate resistance of leukemia-initiating cells (LIC) to TKI-induced killing, which also provides the basis for subsequent emergence of TKI-resistant mutants. We report that EZH2, the catalytic subunit of Polycomb Repressive Complex 2 (PRC2), is overexpressed in CML LICs and required for colony formation and survival and cell-cycle progression of CML cell lines. A critical role for EZH2 is supported by genetic studies in a mouse CML model. Inactivation of Ezh2 in conventional conditional mice and through CRISPR/Cas9-mediated gene editing prevents initiation and maintenance of disease and survival of LICs, irrespective of BCR-ABL1 mutational status, and extends survival. Expression of the EZH2 homolog EZH1 is reduced in EZH2-deficient CML LICs, creating a scenario resembling complete loss of PRC2. EZH2 dependence of CML LICs raises prospects for improved therapy of TKI-resistant CML and/or eradication of disease by addition of EZH2 inhibitors. SIGNIFICANCE This work defines EZH2 as a selective vulnerability for CML cells and their LICs, regardless of BCR-ABL1 mutational status. Our findings provide an experimental rationale for improving disease eradication through judicious use of EZH2 inhibitors within the context of standard-of-care TKI therapy. Cancer Discov; 6(11); 1237-47. ©2016 AACR.See related article by Scott et al., p. 1248This article is highlighted in the In This Issue feature, p. 1197.


Journal of Cell Biology | 2015

Flow-induced protein kinase A–CREB pathway acts via BMP signaling to promote HSC emergence

Peter Geon Kim; Haruko Nakano; Partha P. Das; Michael J. Chen; R. Grant Rowe; Stephanie S. Chou; Samantha J. Ross; Kathleen M. Sakamoto; Leonard I. Zon; Thorsten M. Schlaeger; Stuart H. Orkin; Atsushi Nakano; George Q. Daley

Fluid shear stress promotes the emergence of hematopoietic stem cells (HSCs) in the aorta– gonad–mesonephros (AGM) of the developing mouse embryo. We determined that the AGM is enriched for expression of targets of protein kinase A (PKA)–cAMP response elementbinding protein (CREB), a pathway activated by fluid shear stress. By analyzing CREB ge nomic occupancy from chromatin-immunoprecipitation sequencing (ChIP-seq) data, we identified the bone morphogenetic protein (BMP) pathway as a potential regulator of CREB. By chemical modulation of the PKA–CREB and BMP pathways in isolated AGM VEcadherin+ cells from mid-gestation embryos, we demonstrate that PKA–CREB regulates hematopoietic engraftment and clonogenicity of hematopoietic progenitors, and is dependent on secreted BMP ligands through the type I BMP receptor. Finally, we observed blunting of this signaling axis using Ncx1-null embryos, which lack a heartbeat and intravascular flow. Collectively, we have identified a novel PKA–CREB–BMP signaling pathway down stream of shear stress that regulates HSC emergence in the AGM via the endothelial-tohematopoietic transition.


Nature Immunology | 2016

The histone demethylase UTX regulates the lineage-specific epigenetic program of invariant natural killer T cells

Semir Beyaz; Ji Hyung Kim; Luca Pinello; Michael E. Xifaras; Yu Hu; Jialiang Huang; Marc A. Kerenyi; Partha P. Das; R. Anthony Barnitz; Aurelie Herault; Rizkullah Dogum; W. Nicholas Haining; Ömer H. Yilmaz; Emmanuelle Passegué; Guo-Cheng Yuan; Stuart H. Orkin; Florian Winau

Invariant natural killer T cells (iNKT cells) are innate-like lymphocytes that protect against infection, autoimmune disease and cancer. However, little is known about the epigenetic regulation of iNKT cell development. Here we found that the H3K27me3 histone demethylase UTX was an essential cell-intrinsic factor that controlled an iNKT-cell lineage-specific gene-expression program and epigenetic landscape in a demethylase-activity-dependent manner. UTX-deficient iNKT cells exhibited impaired expression of iNKT cell signature genes due to a decrease in activation-associated H3K4me3 marks and an increase in repressive H3K27me3 marks within the promoters occupied by UTX. We found that JunB regulated iNKT cell development and that the expression of genes that were targets of both JunB and the iNKT cell master transcription factor PLZF was UTX dependent. We identified iNKT cell super-enhancers and demonstrated that UTX-mediated regulation of super-enhancer accessibility was a key mechanism for commitment to the iNKT cell lineage. Our findings reveal how UTX regulates the development of iNKT cells through multiple epigenetic mechanisms.


Molecular & Cellular Proteomics | 2015

Functional Proteomic Analysis of Repressive Histone Methyltransferase Complexes Reveals ZNF518B as a G9A Regulator

Verena K. Maier; Caitlin M. Feeney; Jordan E. Taylor; Amanda L. Creech; Jana W. Qiao; Attila Szanto; Partha P. Das; Nicholas Chevrier; Catherine Cifuentes-Rojas; Stuart H. Orkin; Steven A. Carr; Jacob D. Jaffe; Philipp Mertins; Jeannie T. Lee

Cell-type specific gene silencing by histone H3 lysine 27 and lysine 9 methyltransferase complexes PRC2 and G9A-GLP is crucial both during development and to maintain cell identity. Although studying their interaction partners has yielded valuable insight into their functions, how these factors are regulated on a network level remains incompletely understood. Here, we present a new approach that combines quantitative interaction proteomics with global chromatin profiling to functionally characterize repressive chromatin modifying protein complexes in embryonic stem cells. We define binding stoichiometries of 9 new and 12 known interaction partners of PRC2 and 10 known and 29 new interaction partners of G9A-GLP, respectively. We demonstrate that PRC2 and G9A-GLP interact physically and share several interaction partners, including the zinc finger proteins ZNF518A and ZNF518B. Using global chromatin profiling by targeted mass spectrometry, we discover that even sub-stoichiometric binding partners such as ZNF518B can positively regulate global H3K9me2 levels. Biochemical analysis reveals that ZNF518B directly interacts with EZH2 and G9A. Our systematic analysis suggests that ZNF518B may mediate the structural association between PRC2 and G9A-GLP histone methyltransferases and additionally regulates the activity of G9A-GLP.


Science | 2007

Requirement of bic/microRNA-155 for normal immune function

Antony Rodriguez; Elena Vigorito; Simon Clare; Madhuri Warren; Philippe Couttet; Dalya R. Soond; Stijn van Dongen; Russell Grocock; Partha P. Das; Eric A. Miska; David Vetrie; Klaus Okkenhaug; Anton J. Enright; Gordon Dougan; Martin Turner; Allan Bradley


Cancer Research | 2007

Genetic Unmasking of an Epigenetically Silenced microRNA in Human Cancer Cells

Amaia Lujambio; Santiago Ropero; Esteban Ballestar; Mario F. Fraga; Celia Cerrato; Fernando Setien; Sara Casado; Ana Suárez-Gauthier; Montserrat Sanchez-Cespedes; Anna Gitt; Inmaculada Spiteri; Partha P. Das; Carlos Caldas; Eric A. Miska; Manel Esteller

Collaboration


Dive into the Partha P. Das's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anton J. Enright

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge