Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Partha P. Mitra is active.

Publication


Featured researches published by Partha P. Mitra.


Nature Neuroscience | 2002

Temporal structure in neuronal activity during working memory in macaque parietal cortex.

Bijan Pesaran; John S. Pezaris; Maneesh Sahani; Partha P. Mitra; Richard A. Andersen

Many cortical structures have elevated firing rates during working memory, but it is not known how the activity is maintained. To investigate whether reverberating activity is important, we studied the temporal structure of local field potential (LFP) activity and spiking from area LIP in two awake macaques during a memory-saccade task. Using spectral analysis, we found spatially tuned elevated power in the gamma band (25–90 Hz) in LFP and spiking activity during the memory period. Spiking and LFP activity were also coherent in the gamma band but not at lower frequencies. Finally, we decoded LFP activity on a single-trial basis and found that LFP activity in parietal cortex discriminated between preferred and anti-preferred direction with approximately the same accuracy as the spike rate and predicted the time of a planned movement with better accuracy than the spike rate. This finding could accelerate the development of a cortical neural prosthesis.


Nature Neuroscience | 2004

Multiple neural spike train data analysis: state-of-the-art and future challenges.

Emery N. Brown; Robert E. Kass; Partha P. Mitra

Multiple electrodes are now a standard tool in neuroscience research that make it possible to study the simultaneous activity of several neurons in a given brain region or across different regions. The data from multi-electrode studies present important analysis challenges that must be resolved for optimal use of these neurophysiological measurements to answer questions about how the brain works. Here we review statistical methods for the analysis of multiple neural spike-train data and discuss future challenges for methodology research.


Animal Behaviour | 2000

A procedure for an automated measurement of song similarity

Ofer Tchernichovski; Fernando Nottebohm; Ching Elizabeth Ho; Bijan Pesaran; Partha P. Mitra

Assessment of vocal imitation requires a widely accepted way of describing and measuring any similarities between the song of a tutor and that of its pupil. Quantifying the similarity between two songs, however, can be difficult and fraught with subjective bias. We present a fully automated procedure that measures parametrically the similarity between songs. We tested its performance on a large database of zebra finch, Taeniopygia guttata, songs. The procedure uses an analytical framework of modern spectral analysis to characterize the acoustic structure of a song. This analysis provides a superior sound spectrogram that is then reduced to a set of simple acoustic features. Based on these features, the procedure detects similar sections between songs automatically. In addition, the procedure can be used to examine: (1) imitation accuracy across acoustic features; (2) song development; (3) the effect of brain lesions on specific song features; and (4) variability across different renditions of a song or a call produced by the same individual, across individuals and across populations. By making the procedure available we hope to promote the adoption of a standard, automated method for measuring similarity between songs or calls. Copyright 2000 The Association for the Study of Animal Behaviour.


Nature | 2001

Nonlinear limits to the information capacity of optical fibre communications

Partha P. Mitra; Jason B. Stark

The exponential growth in the rate at which information can be communicated through an optical fibre is a key element in the ‘information revolution’. However, as for all exponential growth laws, physical limits must be considered. The nonlinear nature of the propagation of light in optical fibre has made these limits difficult to elucidate. Here we use a key simplification to investigate the theoretical limits to the information capacity of an optical fibre arising from these nonlinearities. The success of our approach lies in relating the nonlinear channel to a linear channel with multiplicative noise, for which we are able to obtain analytical results. In fundamental distinction to linear channels with additive noise, the capacity of a nonlinear channel does not grow indefinitely with increasing signal power, but has a maximal value. The ideas presented here may have broader implications for other nonlinear information channels, such as those involved in sensory transduction in neurobiology. These have been often examined using additive noise linear channel models but, as we show here, nonlinearities can change the picture qualitatively.


Nature | 2001

Tripling the capacity of wireless communications using electromagnetic polarization.

Michael R. Andrews; Partha P. Mitra; Robert deCarvalho

Wireless communications are a fundamental part of modern information infrastructure. But wireless bandwidth is costly, prompting a close examination of the data channels available using electromagnetic waves. Classically, radio communications have relied on one channel per frequency, although it is well understood that the two polarization states of planar waves allow two distinct information channels; techniques such as ‘polarization diversity’ already take advantage of this. Recent work has shown that environments with scattering, such as urban areas or indoors, also possess independent spatial channels that can be used to enhance capacity greatly. In either case, the relevant signal processing techniques come under the heading of ‘multiple-input/multiple-output’ communications, because multiple antennae are required to access the polarization or spatial channels. Here we show that, in a scattering environment, an extra factor of three in channel capacity can be obtained, relative to the conventional limit using dual-polarized radio signals. The extra capacity arises because there are six distinguishable electric and magnetic states of polarization at a given point, rather than two as is usually assumed.


Neural Computation | 2001

Sampling Properties of the Spectrum and Coherency of Sequences of Action Potentials

M.R. Jarvis; Partha P. Mitra

The spectrum and coherency are useful quantities for characterizing the temporal correlations and functional relations within and between point processes. This article begins with a review of these quantities, their interpretation, and how they may be estimated. A discussion of how to assess the statistical significance of features in these measures is included. In addition, new work is presented that builds on the framework established in the review section. This work investigates how the estimates and their error bars are modified by finite sample sizes. Finite sample corrections are derived based on a doubly stochastic inhomogeneous Poisson process model in which the rate functions are drawn from a low-variance gaussian process. It is found that in contrast to continuous processes, the variance of the estimators cannot be reduced by smoothing beyond a scale set by the number of point events in the interval. Alternatively, the degrees of freedom of the estimators can be thought of as bounded from above by the expected number of point events in the interval. Further new work describing and illustrating a method for detecting the presence of a line in a point process spectrum is also presented, corresponding to the detection of a periodic modulation of the underlying rate. This work demonstrates that a known statistical test, applicable to continuous processes, applies with little modification to point process spectra and is of utility in studying a point process driven by a continuous stimulus. Although the material discussed is of general applicability to point processes, attention will be confined to sequences of neuronal action potentials (spike trains), the motivation for this work.


Journal of Neuroscience Methods | 2010

Chronux: a platform for analyzing neural signals.

Hemant Bokil; Peter Andrews; Jayant E. Kulkarni; Samar B. Mehta; Partha P. Mitra

Chronux is an open-source software package developed for the analysis of neural data. The current version of Chronux includes software for signal processing of neural time-series data including several specialized mini-packages for spike-sorting, local regression, audio segmentation, and other data-analysis tasks typically encountered by a neuroscientist. Chronux is freely available along with user tutorials, sample data, and extensive documentation from http://chronux.org/.


Journal of Neuroscience Methods | 1996

Automatic sorting of multiple unit neuronal signals in the presence of anisotropic and non-Gaussian variability

Michale S. Fee; Partha P. Mitra; David Kleinfeld

Neuronal noise sources and systematic variability in the shape of a spike limit the ability to sort multiple unit waveforms recorded from nervous tissue into their single neuron constituents. Here we present a procedure to efficiently sort spikes in the presence of noise that is anisotropic, i.e., dominated by particular frequencies, and whose amplitude distribution may be non-Gaussian, such as occurs when spike waveforms are a function of interspike interval. Our algorithm uses a hierarchical clustering scheme. First, multiple unit records are sorted into an overly large number of clusters by recursive bisection. Second, these clusters are progressively aggregated into a minimal set of putative single units based on both similarities of spike shape as well as the statistics of spike arrival times, such as imposed by the refractory period. We apply the algorithm to waveforms recorded with chronically implanted micro-wire stereotrodes from neocortex of behaving rat. Natural extension of the algorithm may be used to cluster spike waveforms from records with many input channels, such as those obtained with tetrodes and multiple site optical techniques.


Nature | 2005

How sleep affects the developmental learning of bird song.

Sébastien Derégnaucourt; Partha P. Mitra; Olga Feher; Carolyn L. Pytte; Ofer Tchernichovski

Sleep affects learning and development in humans and other animals, but the role of sleep in developmental learning has never been examined. Here we show the effects of night-sleep on song development in the zebra finch by recording and analysing the entire song ontogeny. During periods of rapid learning we observed a pronounced deterioration in song structure after night-sleep. The song regained structure after intense morning singing. Daily improvement in similarity to the tutored song occurred during the late phase of this morning recovery; little further improvement occurred thereafter. Furthermore, birds that showed stronger post-sleep deterioration during development achieved a better final imitation. The effect diminished with age. Our experiments showed that these oscillations were not a result of sleep inertia or lack of practice, indicating the possible involvement of an active process, perhaps neural song-replay during sleep. We suggest that these oscillations correspond to competing demands of plasticity and consolidation during learning, creating repeated opportunities to reshape previously learned motor skills.


Nature | 2001

Scalable architecture in mammalian brains

Damon A. Clark; Partha P. Mitra; Samuel S.-H. Wang

Comparison of mammalian brain parts has often focused on differences in absolute size, revealing only a general tendency for all parts to grow together. Attempts to find size-independent effects using body weight as a reference variable obscure size relationships owing to independent variation of body size and give phylogenies of questionable significance. Here we use the brain itself as a size reference to define the cerebrotype, a species-by-species measure of brain composition. With this measure, across many mammalian taxa the cerebellum occupies a constant fraction of the total brain volume (0.13 ± 0.02), arguing against the hypothesis that the cerebellum acts as a computational engine principally serving the neocortex. Mammalian taxa can be well separated by cerebrotype, thus allowing the use of quantitative neuroanatomical data to test evolutionary relationships. Primate cerebrotypes have progressively shifted and neocortical volume fractions have become successively larger in lemurs and lorises, New World monkeys, Old World monkeys, and hominoids, lending support to the idea that primate brain architecture has been driven by directed selection pressure. At the same time, absolute brain size can vary over 100-fold within a taxon, while maintaining a relatively uniform cerebrotype. Brains therefore constitute a scalable architecture.

Collaboration


Dive into the Partha P. Mitra's collaboration.

Top Co-Authors

Avatar

Hemant Bokil

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bijan Pesaran

Center for Neural Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Tolpygo

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dan Valente

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge