Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Partha Sharathi Dutta is active.

Publication


Featured researches published by Partha Sharathi Dutta.


Physical Review E | 2016

Chimera patterns induced by distance-dependent power-law coupling in ecological networks.

Tanmoy Banerjee; Partha Sharathi Dutta; Anna Zakharova; Eckehard Schöll

This paper reports the occurrence of several chimera patterns and the associated transitions among them in a network of coupled oscillators, which are connected by a long-range interaction that obeys a distance-dependent power law. This type of interaction is common in physics and biology and constitutes a general form of coupling scheme, where by tuning the power-law exponent of the long-range interaction the coupling topology can be varied from local via nonlocal to global coupling. To explore the effect of the power-law coupling on collective dynamics, we consider a network consisting of a realistic ecological model of oscillating populations, namely the Rosenzweig-MacArthur model, and show that the variation of the power-law exponent mediates transitions between spatial synchrony and various chimera patterns. We map the possible spatiotemporal states and their scenarios that arise due to the interplay between the coupling strength and the power-law exponent.


Theoretical Ecology | 2015

Stochasticity and bistability in insect outbreak dynamics

Yogita Sharma; Karen C. Abbott; Partha Sharathi Dutta; Arvind Kumar Gupta

There is a long history in ecology of using mathematical models to identify deterministic processes that may lead to dramatic population dynamic patterns like boom-and-bust outbreaks. Stochasticity is also well-known to have a significant influence on the dynamics of many ecological systems, but this aspect has received far less attention. Here, we study a stochastic version of a classic bistable insect outbreak model to reveal the role of stochasticity in generating outbreak dynamics. We find that stochasticity has strong effects on the dynamics and that the stochastic system can behave in ways that are not easily anticipated by its deterministic counterpart. Both the intensity and autocorrelation of the stochastic environment are important. Stochasticity with higher intensity (variability) generally weakens bistability, causing the dynamics to spend more time at a single state rather than jumping between alternative stable states. Which state the population tends toward depends on the noise color. High-intensity white noise causes the insect population to spend more time at low density, potentially reducing the severity or frequency of outbreaks. However, red (positively autocorrelated) noise can make the population spend more time near the high density state, intensifying outbreaks. Under neither type of noise do early warning signals reliably predict impending outbreaks or population crashes.


Scientific Reports | 2016

Early warning signals for critical transitions in a thermoacoustic system

E. A. Gopalakrishnan; Yogita Sharma; Tony John; Partha Sharathi Dutta; R. I. Sujith

Dynamical systems can undergo critical transitions where the system suddenly shifts from one stable state to another at a critical threshold called the tipping point. The decrease in recovery rate to equilibrium (critical slowing down) as the system approaches the tipping point can be used to identify the proximity to a critical transition. Several measures have been adopted to provide early indications of critical transitions that happen in a variety of complex systems. In this study, we use early warning indicators to predict subcritical Hopf bifurcation occurring in a thermoacoustic system by analyzing the observables from experiments and from a theoretical model. We find that the early warning measures perform as robust indicators in the presence and absence of external noise. Thus, we illustrate the applicability of these indicators in an engineering system depicting critical transitions.


Theoretical Ecology | 2014

Multiple resource limitation: nonequilibrium coexistence of species in a competition model using a synthesizing unit

Partha Sharathi Dutta; Bob W. Kooi; Ulrike Feudel

During the last two decades, the simple view of resource limitation by a single resource has been changed due to the realization that co-limitation by multiple resources is often an important determinant of species growth. Hence, the multiple resource limitation hypothesis needs to be taken into account, when communities of species competing for resources are considered. We present a multiple species–multiple resource competition model which is based on the concept of synthesizing unit to formulate the growth rates of species competing for interactive essential resources. Using this model, we demonstrate that a more mechanistic explanation of interactive effects of co-limitation may lead to the known complex dynamics including nonequilibrium states as oscillations and chaos. We compare our findings with earlier investigations on biological mechanisms that can predict the outcome of multispecies competition. Moreover, we show that this model yields a periodic state where more species than limiting complementary resources can coexist (supersaturation) in a homogeneous environment. We identify two novel mechanisms, how such a state can emerge: a transcritical bifurcation of a limit cycle and a transition from a heteroclinic cycle. Furthermore, we demonstrate the robustness of the phenomenon of supersaturation when the environmental conditions are varied.


Physical Review E | 2015

Spatial coexistence of synchronized oscillation and death: A chimeralike state.

Partha Sharathi Dutta; Tanmoy Banerjee

We report an interesting spatiotemporal state, namely the chimeralike incongruous coexistence of synchronized oscillation and stable steady state (CSOD) in a network of nonlocally coupled oscillators. Unlike the chimera and chimera death state, in the CSOD state identical oscillators are self-organized into two coexisting spatially separated domains: In one domain neighboring oscillators show synchronized oscillation and in another domain the neighboring oscillators randomly populate either a synchronized oscillating state or a stable steady state (we call it a death state). We consider a realistic ecological network and show that the interplay of nonlocality and coupling strength results in two routes to the CSOD state: One is from a coexisting mixed state of amplitude chimera and death, and another one is from a globally synchronized state. We provide a qualitative explanation of the origin of this state. We further explore the importance of this study in ecology that gives insight into the relationship between spatial synchrony and global extinction of species. We believe this study will improve our understanding of chimera and chimeralike states.


Chaos | 2015

Dispersal-induced synchrony, temporal stability, and clustering in a mean-field coupled Rosenzweig–MacArthur model

Ramesh Arumugam; Partha Sharathi Dutta; Tanmoy Banerjee

In spatial ecology, dispersal among a set of spatially separated habitats, named as metapopulation, preserves the diversity and persistence by interconnecting the local populations. Understanding the effects of several variants of dispersion in metapopulation dynamics and to identify the factors which promote population synchrony and population stability are important in ecology. In this paper, we consider the mean-field dispersion among the habitats in a network and study the collective dynamics of the spatially extended system. Using the Rosenzweig-MacArthur model for individual patches, we show that the population synchrony and temporal stability, which are believed to be of conflicting outcomes of dispersion, can be simultaneously achieved by oscillation quenching mechanisms. Particularly, we explore the more natural coupling configuration where the rates of dispersal of different habitats are disparate. We show that asymmetry in dispersal rate plays a crucial role in determining inhomogeneity in an otherwise homogeneous metapopulation. We further identify an unusual emergent state in the network, namely, a multi-branch clustered inhomogeneous steady state, which arises due to the intrinsic parameter mismatch among the patches. We believe that the present study will shed light on the cooperative behavior of spatially structured ecosystems.


Physical Review E | 2017

Increased persistence via asynchrony in oscillating ecological populations with long-range interaction

Anubhav Gupta; Tanmoy Banerjee; Partha Sharathi Dutta

Understanding the influence of the structure of a dispersal network on the species persistence and modeling a realistic species dispersal in nature are two central issues in spatial ecology. A realistic dispersal structure which favors the persistence of interacting ecological systems was studied [M. D. Holland and A. Hastings, Nature (London) 456, 792 (2008)NATUAS0028-083610.1038/nature07395], where it was shown that a randomization of the structure of a dispersal network in a metapopulation model of prey and predator increases the species persistence via clustering, prolonged transient dynamics, and amplitudes of population fluctuations. In this paper, by contrast, we show that a deterministic network topology in a metapopulation can also favor asynchrony and prolonged transient dynamics if species dispersal obeys a long-range interaction governed by a distance-dependent power law. To explore the effects of power-law coupling, we take a realistic ecological model, namely, the Rosenzweig-MacArthur model in each patch (node) of the network of oscillators, and show that the coupled system is driven from synchrony to asynchrony with an increase in the power-law exponent. Moreover, to understand the relationship between species persistence and variations in power-law exponent, we compute a correlation coefficient to characterize cluster formation, a synchrony order parameter, and median predator amplitude. We further show that smaller metapopulations with fewer patches are more vulnerable to extinction as compared to larger metapopulations with a higher number of patches. We believe that the present work improves our understanding of the interconnection between the random network and the deterministic network in theoretical ecology.


Physical Review E | 2016

Environmental coupling in ecosystems: From oscillation quenching to rhythmogenesis.

Ramesh Arumugam; Partha Sharathi Dutta; Tanmoy Banerjee

How landscape fragmentation affects ecosystems diversity and stability is an important and complex question in ecology with no simple answer, as spatially separated habitats where species live are highly dynamic rather than just static. Taking into account the species dispersal among nearby connected habitats (or patches) through a common dynamic environment, we model the consumer-resource interactions with a ring type coupled network. By characterizing the dynamics of consumer-resource interactions in a coupled ecological system with three fundamental mechanisms such as the interaction within the patch, the interaction between the patches, and the interaction through a common dynamic environment, we report the occurrence of various collective behaviors. We show that the interplay between the dynamic environment and the dispersal among connected patches exhibits the mechanism of generation of oscillations, i.e., rhythmogenesis, as well as suppression of oscillations, i.e., amplitude death and oscillation death. Also, the transition from homogeneous steady state to inhomogeneous steady state occurs through a codimension-2 bifurcation. Emphasizing a network of a spatially extended system, the coupled model exposes the collective behavior of a synchrony-stability relationship with various synchronization occurrences such as in-phase and out-of-phase.


Physical Review E | 2016

Anticipating regime shifts in gene expression: The case of an autoactivating positive feedback loop.

Yogita Sharma; Partha Sharathi Dutta; Arvind Kumar Gupta

Considerable evidence suggests that anticipating sudden shifts from one state to another in bistable dynamical systems is a challenging task; examples include ecosystems, financial markets, and complex diseases. In this paper, we investigate the effects of additive, multiplicative, and cross-correlated stochastic perturbations on determining the regime shifts in a bistable gene regulatory system, which gives rise to two distinct states of low and high concentrations of protein. We obtain the stationary probability density and mean first-passage time of the system. We show that increasing the additive (multiplicative) noise intensity induces a regime shift from a low (high) to a high (low) protein concentration state. However, an increase in the cross-correlation intensity always induces regime shifts from a high to a low protein concentration state. For both bifurcation-induced (often called the tipping point) and noise-induced (called stochastic switching) regime shifts, we further explore the robustness of recently developed critical-down-based early warning signal (EWS) indicators (e.g., rising variance and lag-1 autocorrelation) on our simulated time-series data. We identify that using EWS indicators, prediction of an impending bifurcation-induced regime shift is relatively easier than that of a noise-induced regime shift in the considered system. Moreover, the success of EWS indicators also strongly depends upon the nature of the noise.


Chaos | 2016

Generation and cessation of oscillations: Interplay of excitability and dispersal in a class of ecosystems

Ramesh Arumugam; Tanmoy Banerjee; Partha Sharathi Dutta

We investigate the complex spatiotemporal dynamics of an ecological network with species dispersal mediated via a mean-field coupling. The local dynamics of the network are governed by the Truscott-Brindley model, which is an important ecological model showing excitability. Our results focus on the interplay of excitability and dispersal by always considering that the individual nodes are in their (excitable) steady states. In contrast to the previous studies, we not only observe the dispersal induced generation of oscillation but also report two distinct mechanisms of cessation of oscillations, namely, amplitude and oscillation death. We show that the dispersal between the nodes influences the intrinsic dynamics of the system resulting in multiple oscillatory dynamics such as period-1 and period-2 limit cycles. We also show the existence of multi-cluster states, which has much relevance and importance in ecology.

Collaboration


Dive into the Partha Sharathi Dutta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ramesh Arumugam

Indian Institute of Technology Ropar

View shared research outputs
Top Co-Authors

Avatar

Yogita Sharma

Indian Institute of Technology Ropar

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arvind Kumar Gupta

Indian Institute of Technology Ropar

View shared research outputs
Top Co-Authors

Avatar

Karen C. Abbott

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Bob W. Kooi

VU University Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Subrata Sarker

University of Chittagong

View shared research outputs
Top Co-Authors

Avatar

Anna Zakharova

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Eckehard Schöll

Technical University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge