Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Parvin Hakimi is active.

Publication


Featured researches published by Parvin Hakimi.


Journal of Biological Chemistry | 2007

Overexpression of the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) in skeletal muscle repatterns energy metabolism in the mouse

Parvin Hakimi; Jianqi Yang; Gemma Casadesus; Duna Massillon; Fatima Tolentino-Silva; Colleen Klocek Nye; Marco E. Cabrera; David R. Hagen; Christopher B. Utter; Yacoub Baghdy; David H. Johnson; David L. Wilson; John P. Kirwan; Satish C. Kalhan; Richard W. Hanson

Transgenic mice, containing a chimeric gene in which the cDNA for phosphoenolpyruvate carboxykinase (GTP) (PEPCK-C) (EC 4.1.1.32) was linked to the α-skeletal actin gene promoter, express PEPCK-C in skeletal muscle (1-3 units/g). Breeding two founder lines together produced mice with an activity of PEPCK-C of 9 units/g of muscle (PEPCK-Cmus mice). These mice were seven times more active in their cages than controls. On a mouse treadmill, PEPCK-Cmus mice ran up to 6 km at a speed of 20 m/min, whereas controls stopped at 0.2 km. PEPCK-Cmus mice had an enhanced exercise capacity, with a VO2max of 156 ± 8.0 ml/kg/min, a maximal respiratory exchange ratio of 0.91 ± 0.03, and a blood lactate concentration of 3.7 ± 1.0 mm after running for 32 min at a 25° grade; the values for control animals were 112 ± 21 ml/kg/min, 0.99 ± 0.08, and 8.1 ± 5.0 mm respectively. The PEPCK-Cmus mice ate 60% more than controls but had half the body weight and 10% the body fat as determined by magnetic resonance imaging. In addition, the number of mitochondria and the content of triglyceride in the skeletal muscle of PEPCK-Cmus mice were greatly increased as compared with controls. PEPCK-Cmus mice had an extended life span relative to control animals; mice up to an age of 2.5 years ran twice as fast as 6-12-month-old control animals. We conclude that overexpression of PEPCK-C repatterns energy metabolism and leads to greater longevity.


Proceedings of the National Academy of Sciences of the United States of America | 2002

A mutation in the peroxisome proliferator-activated receptor γ-binding site in the gene for the cytosolic form of phosphoenolpyruvate carboxykinase reduces adipose tissue size and fat content in mice

Yael Olswang; Hannah Cohen; Orit Papo; Hanoch Cassuto; Colleen M. Croniger; Parvin Hakimi; Shirley M. Tilghman; Richard W. Hanson; Lea Reshef

Regulation of the turnover of triglycerides in adipose tissue requires the continuous provision of 3-glycerophosphate, which may be supplied by the metabolism of glucose or by glyceroneogenesis, the de novo synthesis of 3-glycerophosphate from sources other than hexoses or glycerol. The importance of glyceroneogenesis in adipose tissue was assessed in mice by specifically eliminating the expression of the cytosolic form of phosphoenolpyruvate carboxykinase (PEPCK-C), an enzyme that plays a pivotal role in the pathway. To accomplish this, we mutated the binding site for the peroxisome proliferator-activated receptor γ (PPARγ) called the peroxisome proliferator-activated receptor element (PPARE), in the 5′ flanking region of the PEPCK-C gene in the mouse by homologous recombination. The mutation abolished expression of the gene in white adipose tissue and considerably reduced its expression in brown adipose tissue, whereas the level of PEPCK-C mRNA in liver and kidney remained normal. Epididymal white adipose tissue from these mice had a reduced triglyceride deposition, with 25% of the animals displaying lipodystrophy. There was also a greatly reduced level of lipid accumulation in brown adipose tissue. A strong correlation between the hepatic content of triglycerides and the size of the epididymal fat pad in PPARE−/− mice suggests that hepatic triglyceride synthesis predominantly utilizes free fatty acids derived from the adipose tissue. Unlike other models, PPARE−/− mice with lipodystrophy did not exhibit the lipodystrophy-associated features of diabetes and displayed only moderate hyperglycemia. These studies establish the importance of the PPARE site for PEPCK-C gene expression in adipose tissue and the role of PEPCK-C in the regulation of glyceroneogenesis, a pathway critical for maintaining the deposition of triglycerides in adipose tissue.


Journal of Biological Chemistry | 1997

Phosphoenolpyruvate Carboxykinase (GTP) Gene Transcription and Hyperglycemia Are Regulated by Glucocorticoids in Genetically Obesedb/db Transgenic Mice

Jacob E. Friedman; Yang Sun; Tatsuya Ishizuka; Craig J. Farrell; Shana E. McCormack; Lisa M. Herron; Parvin Hakimi; Pamela S. Lechner; Jeung S. Yun

The molecular mechanisms underlying increased hepatic phosphoenolpyruvate carboxykinase (PEPCK) gene transcription and gluconeogenesis in type II diabetes are largely unknown. To examine the involvement of glucocorticoids and thecis-acting insulin response sequence (IRS, −416/−407) in the genetically obese db/db mouse model, we generated crosses between C57BL/KsJ-db/+ mice and transgenic mice that express −460 or −2000 base pairs of the rat PEPCK gene promoter containing an intact or mutated IRS, linked to a reporter gene. Transgenic mice expressing the intact PEPCK(460)-CRP (C-reactive protein) transgene bred to near homozygosity at thedb locus were obese, hyperinsulinemic, and developed fasting hyperglycemia (389 ± 26 mg/100 ml) between 4 and 10 weeks of age. Levels of CRP reporter gene expression were increased 2-fold despite severe hyperinsulinemia compared with non-diabetic non-obese transgenic mice. Reporter gene expression was also increased 2-fold in transgenic obese diabetic db/db mice bearing a mutation in the IRS, −2000(IRS)-hGx, compared with non-obese non-diabetic transgenic 2000(IRS)-hGx mice. Treatment of obese diabeticdb/db transgenic mice with the glucocorticoid receptor blocker RU 486 decreased plasma glucose by 50% and reduced PEPCK, GLUT2, glucose-6-phosphatase, tyrosine aminotransferase, CRP, and hGx reporter gene expression to levels similar to those of non-obese normoglycemic transgenic mice. Taken together, these results establish that −460 bp of 5′-flanking sequence is sufficient to mediate the induction of PEPCK gene transcription in genetically obesedb/db mice during the development of hyperglycemia. The results further demonstrate that the mechanism underlying increased expression of gluconeogenic enzymes in thedb/db mouse requires the action of glucocorticoids and occurs independently of factors acting through the PEPCK IRS (−416/−407) promoter binding site.


Journal of Biological Chemistry | 2005

Glucocorticoids Regulate Transcription of the Gene for Phosphoenolpyruvate Carboxykinase in the Liver via an Extended Glucocorticoid Regulatory Unit

Hanoch Cassuto; Karen Kochan; Kaushik Chakravarty; Hannah Cohen; Barak Blum; Yael Olswang; Parvin Hakimi; Chuan Xu; Duna Massillon; Richard W. Hanson; Lea Reshef

The hepatic transcriptional regulation by glucocorticoids of the cytosolic form of phosphoenolpyruvate carboxykinase (PEPCK-C) gene is coordinated by interactions of specific transcription factors at the glucocorticoid regulatory unit (GRU). We propose an extended GRU that consists of four accessory sites, two proximal AF1 and AF2 sites and their distal counterpart dAF1 (–993) and a new site, dAF2 (–1365); together, these four sites form a palindrome. Sequencing and gel shift binding assays of hepatic nuclear proteins interacting with these sites indicated similarity of dAF1 and dAF2 sites to the GRU proximal AF1 and AF2 sites. Chromatin immunoprecipitation assays demonstrated that glucocorticoids enhanced the binding of FOXO1 and peroxisome proliferator-activated receptor-α to AF2 and dAF2 sites and not to dAF1 site but enhanced the binding of hepatic nuclear transcription factor-4α only to the dAF1 site. Insulin inhibited the binding of these factors to their respective sites but intensified the binding of phosphorylated FOXO1. Transient transfections in HepG2 human hepatoma cells showed that glucocorticoid receptor interacts with several non-steroid nuclear receptors, yielding a synergistic response of the PEPCK-C gene promoter to glucocorticoids. The synergistic stimulation by glucocorticoid receptor together with peroxisome proliferator-activated receptor-α or hepatic nuclear transcription factor-4α requires all four accessory sites, i.e. a mutation of each of these markedly affects the synergistic response. Mice with a targeted mutation of the dAF1 site confirmed this requirement. This mutation inhibited the full response of hepatic PEPCK-C gene to diabetes by reducing PEPCK-C mRNA level by 3.5-fold and the level of circulating glucose by 25%.


Nutrition & Metabolism | 2005

Phosphoenolpyruvate carboxykinase and the critical role of cataplerosis in the control of hepatic metabolism

Parvin Hakimi; Mark T. Johnson; Jianqi Yang; David F. LePage; Ronald A. Conlon; Satish C. Kalhan; Lea Reshef; Shirley M. Tilghman; Richard W. Hanson

BackgroundThe metabolic function of PEPCK-C is not fully understood; deletion of the gene for the enzyme in mice provides an opportunity to fully assess its function.MethodsThe gene for the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) (EC 4.1.1.32) (PEPCK-C) was deleted in mice by homologous recombination (PEPCK-C-/- mice) and the metabolic consequences assessed.ResultsPEPCK-C-/- mice became severely hypoglycemic by day two after birth and then died with profound hypoglycemia (12 mg/dl). The mice had milk in their stomachs at day two after birth and the administration of glucose raised the concentration of blood glucose in the mice but did not result in an increased survival. PEPCK-C-/- mice have two to three times the hepatic triglyceride content as control littermates on the second day after birth. These mice also had an elevation of lactate (2.5 times), β-hydroxybutyrate (3 times) and triglyceride (50%) in their blood, as compared to control animals. On day two after birth, alanine, glycine, glutamine, glutamate, aspartate and asparagine were elevated in the blood of the PEPCK-C-/- mice and the blood urea nitrogen concentration was increased by 2-fold. The rate of oxidation of [2-14C]-acetate, and [5-14C]-glutamate to 14CO2 by liver slices from PEPCK-C-/- mice at two days of age was greatly reduced, as was the rate of fatty acid synthesis from acetate and glucose. As predicted by the lack of PEPCK-C, the concentration of malate in the livers of the PEPCK-C-/- mice was 10 times that of controls.ConclusionWe conclude that PEPCK-C is required not only for gluconeogenesis and glyceroneogenesis but also for cataplerosis (i.e. the removal of citric acid cycle anions) and that the failure of this process in the livers of PEPCK-C-/- mice results in a marked reduction in citric acid cycle flux and the shunting of hepatic lipid into triglyceride, resulting in a fatty liver.


Journal of Biological Chemistry | 2009

Activation of SIRT1 by Resveratrol Represses Transcription of the Gene for the Cytosolic Form of Phosphoenolpyruvate Carboxykinase (GTP) by Deacetylating Hepatic Nuclear Factor 4α

Jianqi Yang; Xiaoying Kong; Maria Emilia S Martins-Santos; Gabriela Aleman; Ernestine Chaco; George E. Liu; Shwu Yuan Wu; David Samols; Parvin Hakimi; Cheng Ming Chiang; Richard W. Hanson

The SIRT1 activators isonicotinamide (IsoNAM), resveratrol, fisetin, and butein repressed transcription of the gene for the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) (PEPCK-C). An evolutionarily conserved binding site for hepatic nuclear factor (HNF) 4α (−272/−252) was identified, which was required for transcriptional repression of the PEPCK-C gene promoter caused by these compounds. This site contains an overlapping AP-1 binding site and is adjacent to the C/EBP binding element (−248/−234); the latter is necessary for hepatic transcription of PEPCK-C. AP-1 competed with HNF4α for binding to this site and also decreased HNF4α stimulation of transcription from the PEPCK-C gene promoter. Chromatin immunoprecipitation experiments demonstrated that HNF4α and AP-1, but not C/EBPβ, reciprocally bound to this site prior to and after treating HepG2 cells with IsoNAM. IsoNAM treatment resulted in deacetylation of HNF4α, which decreased its binding affinity to the PEPCK-C gene promoter. In HNF4α-null Chinese hamster ovary cells, IsoNAM and resveratrol failed to repress transcription from the PEPCK-C gene promoter; overexpression of HNF4α in Chinese hamster ovary cells re-established transcriptional inhibition. Exogenous SIRT1 expression repressed transcription, whereas knockdown of SIRT1 by RNA interference reversed this effect. IsoNAM decreased the level of mRNA for PEPCK-C but had no effect on mRNA for glucose-6-phosphatase in AML12 mouse hepatocytes. We conclude that SIRT1 activation inhibited transcription of the gene for PEPCK-C in part by deacetylation of HNF4α. However, SIRT1 deacetylation of other key regulatory proteins that control PEPCK-C gene transcription also likely contributed to the inhibitory effect.


Biochimie | 2008

Born to run; the story of the PEPCK-Cmus mouse ☆

Richard W. Hanson; Parvin Hakimi

In order to study the role of the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) (EC 4.1.1.32) (PEPCK-C) in skeletal muscle, PEPCK-Cmus mice were created by introducing the cDNA for the enzyme, linked to the human alpha-skeletal actin gene promoter, into their germ line. Two founder lines generated by this procedure were bred together, creating a line of mice that have 9.0 units/g skeletal muscle of PEPCK-C, as compared to 0.080 units/g in muscle from control animals. The mice were more active than controls in their cages and could run for up to 5 km, at a speed of 20 m/min without stopping (control mice run for 0.2 km at the same speed). Male PEPCK-Cmus mice are extremely aggressive, as well as hyperactive. During strenuous exercise, they use fatty acids as a fuel more efficiently than do controls and produce far less lactate than do control animals, perhaps due to the greatly increased number of mitochondria in their skeletal muscle. PEPCK-Cmus mice also store up to five-times more triglyceride in their skeletal muscle, but have only marginal amounts of triglyceride in their adipose tissue depots, despite eating 60% more than controls. The concentration of leptin and insulin the blood of 8-12 months of PEPCK-Cmus mice is far lower than noted in the blood of control animals of the same age. These mice live longer than controls and the females remain reproductively active for as long as 35 months. The possible reasons for the profound alteration in activity and longevity caused the introduction of a simple metabolic enzyme into the skeletal muscle of the mice will be discussed.


Journal of Biological Chemistry | 2012

Enhanced Energy Metabolism Contributes to the Extended Life Span of Calorie-restricted Caenorhabditis elegans

Yiyuan Yuan; Chandra Sekhar Rao Kadiyala; Tsui Ting Ching; Parvin Hakimi; Sudipto Saha; Hua Xu; Chao Yuan; Vennela Mullangi; Liwen Wang; Elayne Fivenson; Richard W. Hanson; Rob M. Ewing; Ao Lin Hsu; Masaru Miyagi; Zhaoyang Feng

Background: How energy metabolism contributes to the extended life span of calorie-restricted animals remains an enigma. Results: We identified enhanced fuel oxidation and a preference of fatty acids as the major energy source in calorie-restricted nematodes. Conclusion: Enhanced fuel utilization rather than total ingested calories contributes to the beneficial effects of calorie restriction. Significance: Enhanced fuel oxidation to extend life span is a conserved mechanism across phylogeny. Caloric restriction (CR) markedly extends life span and improves the health of a broad number of species. Energy metabolism fundamentally contributes to the beneficial effects of CR, but the underlying mechanisms that are responsible for this effect remain enigmatic. A multidisciplinary approach that involves quantitative proteomics, immunochemistry, metabolic quantification, and life span analysis was used to determine how CR, which occurs in the Caenorhabditis elegans eat-2 mutants, modifies energy metabolism of the worm, and whether the observed modifications contribute to the CR-mediated physiological responses. A switch to fatty acid metabolism as an energy source and an enhanced rate of energy metabolism by eat-2 mutant nematodes were detected. Life span analyses validated the important role of these previously unknown alterations of energy metabolism in the CR-mediated longevity of nematodes. As observed in mice, the overexpression of the gene for the nematode analog of the cytosolic form of phosphoenolpyruvate carboxykinase caused a marked extension of the life span in C. elegans, presumably by enhancing energy metabolism via an altered rate of cataplerosis of tricarboxylic acid cycle anions. We conclude that an increase, not a decrease in fuel consumption, via an accelerated oxidation of fuels in the TCA cycle is involved in life span regulation; this mechanism may be conserved across phylogeny.


Neonatology | 1993

Expression of the Genes for the Mitochondrial and Cytosolic Forms of Phosphoenolpyruvate Carboxykinase in Avian Liver during Development

Summer Savon; Parvin Hakimi; Richard W. Hanson

Gluconeogenesis in the chicken has unique features due in part to the presence of two isozymes of PEPCK, a cytosolic form, PEPCK-C, and a mitochondrial form, PEPCK-M, which have novel patterns of expression. Here we show that, in contrast to mammals, in which PEPCK-C is not present in liver until after birth, avian PEPCK-C is expressed throughout embryonic life with mRNA levels gradually decreasing as development proceeds and becoming negligible at time of hatching. In addition two distinct mRNAs for PEPCK-M are expressed during development with specific patterns that vary among individual birds. These differences are likely to be genetic, as hormonal treatment of a chicken hepatoma cell line indicates that whereas the mRNA levels for PEPCK-C are hormonally regulated, the expression of PEPCK-M mRNA is unresponsive.


Journal of Biological Chemistry | 1998

Nuclear Factor I Regulates Expression of the Gene for Phosphoenolpyruvate Carboxykinase (GTP)

Deborah R. Crawford; Patrick Leahy; Ching Y. Hu; Ali Z. Chaudhry; Richard M. Gronostajski; Gregory Grossman; Jason Woods; Parvin Hakimi; William J. Roesler; Richard W. Hanson

Nuclear factor-I (NFI) binds to the phosphoenolpyruvate carboxykinase (GTP) (PEPCK) gene promoter immediately 5′ to the cAMP regulatory element (CRE). This suggests an interaction between NFI and factors that bind the CRE. Of the four NFI isoforms expressed in mammalian tissues, NFI-A and -B stimulate basal transcription from the PEPCK gene promoter in HepG2 cells, while NFI-C and -X are slightly inhibitory. All four NFI isoforms abrogate the 20-fold protein kinase Ac (PKAc)-mediated induction of transcription from the PEPCK gene promoter. Normal PKAc-mediated induction was noted when the CRE was moved 10 base pairs 3′ of its original location. However if the CRE was moved 5 base pairs 3′, placing it out of phase with the other elements in the promoter, or moved 5′ to −285 (the P3(I) site in the promoter), some PKA-mediated stimulation was lost. The NFI-C isoform effectively inhibited PKAc induction regardless of the relative positions of the CRE and the NFI binding sites. NFI-C also abrogated cAMP regulatory element-binding protein (CREB)-induced activity of wild type and mutant PEPCK promoters. There was some cooperativity in the binding of CREB and NFI to their respective binding sites but this did not appear to be physiologically important.

Collaboration


Dive into the Parvin Hakimi's collaboration.

Top Co-Authors

Avatar

Richard W. Hanson

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Nathan A. Berger

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Austin L. Gurney

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Colleen M. Croniger

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Jeung S. Yun

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Jianqi Yang

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Pamela S. Lechner

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhaoyang Feng

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Lea Reshef

Hebrew University of Jerusalem

View shared research outputs
Researchain Logo
Decentralizing Knowledge