Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pascal Audet is active.

Publication


Featured researches published by Pascal Audet.


Nature | 2009

Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing

Pascal Audet; Michael G. Bostock; Nikolas I. Christensen; Simon M. Peacock

Water and hydrous minerals play a key part in geodynamic processes at subduction zones by weakening the plate boundary, aiding slip and permitting subduction—and indeed plate tectonics—to occur. The seismological signature of water within the forearc mantle wedge is evident in anomalies with low seismic shear velocity marking serpentinization. However, seismological observations bearing on the presence of water within the subducting plate itself are less well documented. Here we use converted teleseismic waves to obtain observations of anomalously high Poisson’s ratios within the subducted oceanic crust from the Cascadia continental margin to its intersection with forearc mantle. On the basis of pressure, temperature and compositional considerations, the elevated Poisson’s ratios indicate that water is pervasively present in fluid form at pore pressures near lithostatic values. Combined with observations of a strong negative velocity contrast at the top of the oceanic crust, our results imply that the megathrust is a low-permeability boundary. The transition from a low- to high-permeability plate interface downdip into the mantle wedge is explained by hydrofracturing of the seal by volume changes across the interface caused by the onset of crustal eclogitization and mantle serpentinization. These results may have important implications for our understanding of seismogenesis, subduction zone structure and the mechanism of episodic tremor and slip.


Geology | 2011

High pore pressures and porosity at 35 km depth in the Cascadia subduction zone

Simon M. Peacock; Nikolas I. Christensen; Michael G. Bostock; Pascal Audet

In the Cascadia subduction zone, beneath southern Vancouver Island at 25–45 km depth, converted teleseismic waves reveal an ∼5-km-thick landward-dipping layer with anomalously high Vp/Vs averaging 2.35 ± 0.10 (2σ), interpreted as subducted oceanic crust of the Juan de Fuca plate. This layer is observed downdip of the inferred locked seismogenic zone, in the region of episodic tremor and slip. Laboratory velocity measurements of crystalline rock samples made at 200 MPa confining pressure and elevated pore pressures demonstrate that Vp/Vs increases with increasing fluid-filled porosity. The observed high Vp/Vs values are best explained by pore fluids under near lithostatic pressure in a layer with a high porosity of 2.7%–4.0%. Such large volumes of fluid take ∼1 m.y. to accumulate based on reasonable rates of metamorphic fluid production of ∼10 –4 m 3 /(m 2 yr) in subducting Juan de Fuca crust and mantle. Accordingly, the permeability of the plate interface at these depths must be very low, ∼10 –24 to ∼10 –21 m 2 , or the porous layer must have a permeability –20 m 2 .


Nature | 2014

Uplift and seismicity driven by groundwater depletion in central California

Colin B. Amos; Pascal Audet; William C. Hammond; Roland Bürgmann; Ingrid Anne Johanson; Geoffrey Blewitt

Groundwater use in California’s San Joaquin Valley exceeds replenishment of the aquifer, leading to substantial diminution of this resource and rapid subsidence of the valley floor. The volume of groundwater lost over the past century and a half also represents a substantial reduction in mass and a large-scale unburdening of the lithosphere, with significant but unexplored potential impacts on crustal deformation and seismicity. Here we use vertical global positioning system measurements to show that a broad zone of rock uplift of up to 1–3 mm per year surrounds the southern San Joaquin Valley. The observed uplift matches well with predicted flexure from a simple elastic model of current rates of water-storage loss, most of which is caused by groundwater depletion. The height of the adjacent central Coast Ranges and the Sierra Nevada is strongly seasonal and peaks during the dry late summer and autumn, out of phase with uplift of the valley floor during wetter months. Our results suggest that long-term and late-summer flexural uplift of the Coast Ranges reduce the effective normal stress resolved on the San Andreas Fault. This process brings the fault closer to failure, thereby providing a viable mechanism for observed seasonality in microseismicity at Parkfield and potentially affecting long-term seismicity rates for fault systems adjacent to the valley. We also infer that the observed contemporary uplift of the southern Sierra Nevada previously attributed to tectonic or mantle-derived forces is partly a consequence of human-caused groundwater depletion.


Journal of Geophysical Research | 2010

Slab morphology in the Cascadia fore arc and its relation to episodic tremor and slip

Pascal Audet; Michael G. Bostock; D. C. Boyarko; Michael R. Brudzinski; Richard M. Allen

[1] Episodic tremor and slip (ETS) events in subduction zones occur in the general vicinity of the plate boundary, downdip of the locked zone. In developing an understanding of the ETS phenomenon it is important to relate the spatial occurrence of nonvolcanic tremor to the principal structural elements within the subduction complex. In Cascadia, active and passive source seismic data image a highly reflective, dipping, low‐velocity zone (LVZ) beneath the fore‐arc crust; however, its continuity along the margin is not established with certainty, and its interpretation is debated. In this work we have assembled a large teleseismic body wave data set comprising stations from northern California to northern Vancouver Island. Using stacked receiver functions we demonstrate that the LVZ is well developed along the entire margin from the coast eastward to the fore‐arc basins (Georgia Strait, Puget Sound, and Willamette Valley). Combined with observations and predictions of intraslab seismicity, seismic velocity structure, and tremor hypocenters, our results support the thesis that the LVZ represents the signature of subducted oceanic crust, consistent with thermal‐petrological modeling of subduction zone metamorphism. The location of tremor epicenters along the revised slab contours indicates their occurrence close to but seaward of the wedge corner. Based on evidence for high pore fluid pressure within the oceanic crust and a downdip transition in permeability of the plate interface, we propose a conceptual model for the generation of ETS where the occurrence and recurrence of propagating slow slip and low‐frequency tremor are explained by episodic pore fluid pressure buildup and fluid release into or across the plate boundary.


Nature | 2014

Possible control of subduction zone slow-earthquake periodicity by silica enrichment

Pascal Audet; Roland Bürgmann

Seismic and geodetic observations in subduction zone forearcs indicate that slow earthquakes, including episodic tremor and slip, recur at intervals of less than six months to more than two years. In Cascadia, slow slip is segmented along strike and tremor data show a gradation from large, infrequent slip episodes to small, frequent slip events with increasing depth of the plate interface. Observations and models of slow slip and tremor require the presence of near-lithostatic pore-fluid pressures in slow-earthquake source regions; however, direct evidence of factors controlling the variability in recurrence times is elusive. Here we compile seismic data from subduction zone forearcs exhibiting recurring slow earthquakes and show that the average ratio of compressional (P)-wave velocity to shear (S)-wave velocity (vP/vS) of the overlying forearc crust ranges between 1.6 and 2.0 and is linearly related to the average recurrence time of slow earthquakes. In northern Cascadia, forearc vP/vS values decrease with increasing depth of the plate interface and with decreasing tremor-episode recurrence intervals. Low vP/vS values require a large addition of quartz in a mostly mafic forearc environment. We propose that silica enrichment varying from 5 per cent to 15 per cent by volume from slab-derived fluids and upward mineralization in quartz veins can explain the range of observed vP/vS values as well as the downdip decrease in vP/vS. The solubility of silica depends on temperature, and deposition prevails near the base of the forearc crust. We further propose that the strong temperature dependence of healing and permeability reduction in silica-rich fault gouge via dissolution–precipitation creep can explain the reduction in tremor recurrence time with progressive silica enrichment. Lower gouge permeability at higher temperatures leads to faster fluid overpressure development and low effective fault-normal stress, and therefore shorter recurrence times. Our results also agree with numerical models of slip stabilization under fault zone dilatancy strengthening caused by decreasing fluid pressure as pore space increases. This implies that temperature-dependent silica deposition, permeability reduction and fluid overpressure development control dilatancy and slow-earthquake behaviour.


Journal of Geophysical Research | 2015

Layered crustal anisotropy around the San Andreas Fault near Parkfield, California

Pascal Audet

The rheology of the Earths crust controls the long-term and short-term strength and stability of plate boundary faults and depends on the architecture and physical properties of crustal materials. In this paper we examine the seismic structure and anisotropy of the crust around the San Andreas Fault (SAF) near Parkfield, California, using teleseismic receiver functions. These data indicate that the crust is characterized by spatially variable and strongly anisotropic upper and middle crustal layers, with a Moho at ∼35 km depth. The upper layer is ∼5–10 km thick and is characterized by strong (≥30%) anisotropy with a slow axis of hexagonal symmetry, where the plane of fast velocity has a strike parallel to that of the SAF and a dip of ∼40∘. We interpret this layer as pervasive fluid-filled microcracks within the brittle deformation regime. The ∼10–15 km thick midcrustal layer is also characterized by a weak axis of hexagonal symmetry with ≥20% anisotropy, but the dip direction of the plane of fast velocity is reversed. The midcrustal anisotropic layer is more prominent to the northeast of the San Andreas Fault. We interpret the mid crustal anisotropic layer as fossilized fabric within fluid-rich foliated mica schists. When combined with various other geophysical observations, our results suggest that fault creep behavior around Parkfield is favored by intrinsically weak and overpressured crustal fabric.


Geology | 2008

Morphology of the Explorer–Juan de Fuca slab edge in northern Cascadia: Imaging plate capture at a ridge-trench-transform triple junction

Pascal Audet; Michael G. Bostock; J.-P. Mercier; John F. Cassidy

The Explorer plate is a young oceanic microplate that accommodates relative motion between the Pacific, Juan de Fuca, and North America plates near northern Vancouver Island, Canada. The northern limit of Explorer plate–Juan de Fuca subduction and the fate of the slab in northern Cascadia are poorly understood. We use passive teleseismic recordings from an array of POLARIS broadband seismic stations to image crustal and upper mantle structure beneath northern Vancouver Island into the interior of British Columbia. A clear signature of subducted material extends northeast from the Brooks Peninsula at crustal levels, beneath Georgia Strait and the mainland deep into the mantle to 300 km depth. Complexity in slab morphology results from Juan de Fuca ridge subduction and toroidal flow around the slab edge, in agreement with geophysical and geological data. We propose a tectonic model for the Explorer plate in which its separation from the Juan de Fuca plate is caused by the thermomechanical erosion of the slab edge and slab thinning at shallow levels, both of which slow convergence with North America and lead eventually to plate capture.


Bulletin of the Seismological Society of America | 2014

Phase‐Weighted Stacking Applied to Low‐Frequency Earthquakes

Clifford H. Thurber; Xiangfang Zeng; Amanda M. Thomas; Pascal Audet

Abstract We apply phase‐weighted stacking (PWS) to the analysis of low‐frequency earthquakes (LFEs) in the Parkfield, California, region and central Cascadia. The technique uses the coherence of the instantaneous phase among the stacked signals to enhance the signal‐to‐noise ratio (SNR) of the stack. We find that for picking LFE arrivals for the Parkfield, California, region and for LFE template formation in central Cascadia, PWS is extremely effective. For LFEs in the Parkfield, California, region, PWS yields many more usable phases than standard linear stacking; and, for LFE detection in Cascadia, PWS produces templates with much higher SNR than linear stacking.


Geophysical Research Letters | 2015

Low‐frequency earthquakes at the southern Cascadia margin

Alexandre P. Plourde; Michael G. Bostock; Pascal Audet; Amanda M. Thomas

We use seismic waveform data from the Mendocino Experiment to detect low-frequency earthquakes (LFEs) beneath Northern California during the April 2008 tremor-and-slip episode. In southern Cascadia, 59 templates were generated using iterative network cross correlation and stacking and grouped into 34 distinct LFE families. The main front of tremor epicenters migrates along strike at 9 km d−1; we also find one instance of rapid tremor reversal, observed to propagate in the opposite direction at 10–20 km h−1. As in other regions of Cascadia, LFE hypocenters from this study lie several kilometers above a recent plate interface model. South of Cascadia, LFEs were discovered on the Maacama and Bucknell Creek faults. The Bucknell Creek Fault may be the youngest fault yet observed to host LFEs. These fault zones also host shallow earthquake swarms with repeating events that are distinct from LFEs in their spectral and recurrence characteristics.


Geology | 2016

Control of lithospheric inheritance on neotectonic activity in northwestern Canada

Pascal Audet; Christian Sole; Andrew J. Schaeffer

Lithospheric inheritance is thought to affect the location and reactivation of tectonic structures through successive cycles of supercontinent formation and dispersal; however, its relation to neotectonic activity remains unclear. In northwestern Canada, abundant seismicity throughout the northern Canadian Cordillera (NCC) is geographically confined by several crustal-scale boundaries, yet its southern extent terminates abruptly along the inferred westward extension of a Late Cretaceous rifted margin boundary called the Liard transfer zone (LTZ). We use seismic data to show that the uppermost mantle beneath the Cordillera exhibits a sharp north-south contrast in fabric across the LTZ. South of the LTZ, fast axes of seismic wave propagation align closely with the lithospheric mantle fabric orientation of the adjacent Canadian shield. North of the LTZ, fast axes are reoriented subparallel to the motion of the Pacific plate and follow the strike of the large dextral strike-slip Tintina and Denali faults. We attribute changes in anisotropic delay times across the Tintina and Denali faults to localized shear within the lithosphere; this implies that the crust and lithospheric mantle remained mechanically coupled during shearing. We propose that the contrast in uppermost mantle structure across the LTZ reflects a change in the nature and origin of the lithospheric mantle from inherited rifted margin structures, which affects the stability of the lithosphere and limits the extent of seismic activity within the NCC. These results indicate that neotectonic activity in modern Cordilleras is controlled in part by inherited upper mantle structures.

Collaboration


Dive into the Pascal Audet's collaboration.

Top Co-Authors

Avatar

Michael G. Bostock

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.-P. Mercier

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Schaeffer

Dublin Institute for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Claude Mareschal

Université du Québec à Montréal

View shared research outputs
Top Co-Authors

Avatar

Nikolas I. Christensen

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Simon M. Peacock

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge