Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pascal Ballester is active.

Publication


Featured researches published by Pascal Ballester.


Proceedings of SPIE | 2004

CRIRES: A High Resolution Infrared Spectrograph for ESO’s VLT

Hans-Ulrich Kaeufl; Pascal Ballester; Peter Biereichel; Bernard Delabre; R. Donaldson; Reinhold J. Dorn; Enrico Fedrigo; Gert Finger; Gerhard Fischer; F. Franza; Domingo Gojak; Gotthard Huster; Yves Jung; Jean-Louis Lizon; Leander Mehrgan; Manfred Meyer; Alan F. M. Moorwood; Jean-Francois Pirard; Jerome Paufique; Eszter Pozna; Ralf Siebenmorgen; Armin Silber; Joerg Stegmeier; Stefan Wegerer

CRIRES is a cryogenic, pre-dispersed, infrared echelle spectrograph designed to provide a resolving power lambda/(Delta lambda) of 105 between 1 and 5mu m at the Nasmyth focus B of the 8m VLT unit telescope #1 (Antu). A curvature sensing adaptive optics system feed is used to minimize slit losses and to provide diffraction limited spatial resolution along the slit. A mosaic of 4 Aladdin~III InSb-arrays packaged on custom-fabricated ceramics boards has been developed. This provides for an effective 4096x512 pixel focal plane array, to maximize the free spectral range covered in each exposure. Insertion of gas cells to measure high precision radial velocities is foreseen. For measurement of circular polarization a Fresnel rhomb in combination with a Wollaston prism for magnetic Doppler imaging is foreseen. The implementation of full spectropolarimetry is under study. This is one result of a scientific workshop held at ESO in late 2003 to refine the science-case of CRIRES. Installation at the VLT is scheduled during the first half of 2005. Here we briefly recall the major design features of CRIRES and describe its current development status including a report of laboratory testing.


Astronomy and Astrophysics | 2013

Automated data reduction workflows for astronomy - The ESO Reflex environment

Wolfram Freudling; M. Romaniello; D. M. Bramich; Pascal Ballester; Vincenzo Forchi; C. E. Garcia-Dablo; S. Moehler; M. J. Neeser

Context. Data from complex modern astronomical instruments often consist of a large number of di erent science and calibration files, and their reduction requires a variety of software tools. The execution chain of the tools represents a complex workflow that needs to be tuned and supervised, often by individual researchers that are not necessarily experts for any specific instrument. Aims. The e ciency of data reduction can be improved by using automatic workflows to organise data and execute a sequence of data reduction steps. To realize such e ciency gains, we designed a system that allows intuitive representation, execution and modification of the data reduction workflow, and has facilities for inspection and interaction with the data. Methods. The European Southern Observatory (ESO) has developed Reflex, an environment to automate data reduction workflows. Reflex is implemented as a package of customized components for the Kepler workflow engine. Kepler provides the graphical user interface to create an executable flowchart-like representation of the data reduction process. Key features of Reflex are a rule-based data organiser, infrastructure to re-use results, thorough book-keeping, data progeny tracking, interactive user interfaces, and a novel concept to exploit information created during data organisation for the workflow execution. Results. Automated workflows can greatly increase the e ciency of astronomical data reduction. In Reflex, workflows can be run noninteractively as a first step. Subsequent optimization can then be carried out while transparently re-using all unchanged intermediate products. We found that such workflows enable the reduction of complex data by non-expert users and minimizes mistakes due to book-keeping errors. Conclusions. Reflex includes novel concepts to increase the e ciency of astronomical data processing. While Reflex is a specific implementation of astronomical scientific workflows within the Kepler workflow engine, the overall design choices and methods can also be applied to other environments for running automated science workflows.


Astronomy and Astrophysics | 2015

Molecfit: A general tool for telluric absorption correction I. Method and application to ESO instruments ?;??

Alain Smette; H. Sana; Stefan Noll; H. Horst; W. Kausch; S. Kimeswenger; M. Barden; C. Szyszka; Amy Jones; A. Gallenne; Jakob Vinther; Pascal Ballester; J. Taylor

Context. The interaction of the light from astronomical objects with the constituents of the Earth’s atmosphere leads to the formation of telluric absorption lines in ground-based collected spectra. Correcting for these lines, mostly a ecting the red and infrared region of the spectrum, usually relies on observations of specific stars obtained close in time and airmass to the science targets, therefore using precious observing time. Aims. We present molecfit, a tool to correct for telluric absorption lines based on synthetic modelling of the Earth’s atmospheric transmission. Molecfit is versatile and can be used with data obtained with various ground-based telescopes and instruments. Methods. Molecfit combines a publicly available radiative transfer code, a molecular line database, atmospheric profiles, and various kernels to model the instrument line spread function. The atmospheric profiles are created by merging a standard atmospheric profile representative of a given observatory’s climate, of local meteorological data, and of dynamically retrieved altitude profiles for temperature, pressure, and humidity. We discuss the various ingredients of the method, its applicability, and its limitations. We also show examples of telluric line correction on spectra obtained with a suite of ESO Very Large Telescope (VLT) instruments. Results. Compared to previous similar tools, molecfit takes the best results for temperature, pressure, and humidity in the atmosphere above the observatory into account. As a result, the standard deviation of the residuals after correction of unsaturated telluric lines is frequently better than 2% of the continuum. Conclusions. Molecfit is able to accurately model and correct for telluric lines over a broad range of wavelengths and spectral resolutions. The accuracy reached is comparable to or better than the typical accuracy achieved using a telluric standard star observation. The availability of such a general tool for telluric absorption correction may improve future observational and analysing strategies, as well as empower users of archival data.


Proceedings of SPIE | 2010

The X-shooter pipeline

Andrea Modigliani; Paolo Goldoni; Frederic Royer; R. Haigron; Laurent Guglielmi; Patrick Francois; M. Horrobin; Paul Bristow; J. Vernet; S. Moehler; Florian Kerber; Pascal Ballester; E. Mason; L. Christensen

The X-shooter data reduction pipeline, as part of the ESO-VLT Data Flow System, provides recipes for Paranal Science Operations, and for Data Product and Quality Control Operations at Garching headquarters. At Paranal, it is used for the quick-look data evaluation. The pipeline recipes can be executed either with EsoRex at the command line level or through the Gasgano graphical user interface. The recipes are implemented with the ESO Common Pipeline Library (CPL). X-shooter is the first of the second generation of VLT instruments. It makes possible to collect in one shot the full spectrum of the target from 300 to 2500 nm, subdivided in three arms optimised for UVB, VIS and NIR ranges, with an efficiency between 15% and 35% including the telescope and the atmosphere, and a spectral resolution varying between 3000 and 17,000. It allows observations in stare, offset modes, using the slit or an IFU, and observing sequences nodding the target along the slit. Data reduction can be performed either with a classical approach, by determining the spectral format via 2D-polynomial transformations, or with the help of a dedicated instrument physical model to gain insight on the instrument and allowing a constrained solution that depends on a few parameters with a physical meaning. In the present paper we describe the steps of data reduction necessary to fully reduce science observations in the different modes with examples on typical data calibrations and observations sequences.


Astronomical Telescopes and Instrumentation | 2000

FLAMES: a multi-object fiber facility for the VLT

Luca Pasquini; Gerardo Avila; Eric Allaert; Pascal Ballester; Peter Biereichel; Bernard Buzzoni; Cyril Cavadore; Hans Dekker; Bernard Delabre; Francesco R. Ferraro; V. Hill; Andreas Kaufer; Heinz Kotzlowski; J.-L. Lizon; Antonio Longinotti; S. Moureau; Ralf Palsa; S. Zaggia

FLAMES is a fiber facility to be installed on the A platform of the VLT Kueyen telescope, which can feed up to three spectrographs with fibers positioned over a corrected 25 arcminutes field of view. The initial configuration will include connections to the GIRAFFE and to the red arm of the UVES spectrographs, the latter, located on the Nasmyth B platform of the same telescope, is already in operation as a long slit stand alone instrument. The 8 fibers to UVES will give R approximately 45000 and a large spectral coverage, while GIRAFFE will be fed by 132 single fibers, or by 15 deployable integral field units or by one central large integral unit. GIRAFFE will be equipped with two gratings, giving R equals 5000-9000 and R equals 15000-25000 respectively. It will be possible to obtain GIRAFFE and UVES observations simultaneously. Special attention is paid to optimizing night operations and to providing appropriate data reduction. The instrument is rather complex and it is now in the construction phase; in addition to ESO, its realization has required the collaboration of several institutes grouped in 4 consortia.


Astronomical Telescopes and Instrumentation | 2003

VINCI, the VLTI commissioning instrument: status after one year of operations at Paranal

Pierre Kervella; Philippe B. Gitton; D. Ségransan; Emmanuel di Folco; P. Kern; M. Kiekebusch; Than Phan Duc; Antonio Longinotti; Vincent Coude du Foresto; Pascal Ballester; Cyrus Sabet; W. D. Cotton; Markus Schoeller; Rainer Wilhelm

Installed at the heart of the Very Large Telescope Interferometer (VLTI), VINCI combines coherently the infrared light coming from two telescopes. The first fringes were obtained in March 2001 with the VLTI test siderostats, and in October of the same year with the 8 meters Unit Telescopes (UTs). After more than one year of operation, it is now possible to evaluate its behavior and performances with a relatively long timescale. During this period, the technical downtime has been kept to a very low level. The most important parameters of the instrument (interferometric efficiency, mechanical stability,...) have been followed regularly, leading to a good understanding of its performances and characteristics. In addition to a large number of laboratory measurements, more than 3000 on-sky observations have been recorded, giving a precise knowledge of the behavior of the system under various conditions. We report in this paper the main characteristics of the VINCI instrument hardware and software. The differences between observations with the siderostats and the UTs are also briefly discussed.


Astronomical Telescopes and Instrumentation | 2003

The VLTI – A Status Report

Andreas Glindemann; J. Algomedo; R. Amestica; Pascal Ballester; Bertrand Bauvir; E. Bugueño; Serge Correia; F. Delgado; Francoise Delplancke; Frederic Derie; Ph. Duhoux; E. Di Folco; Alberto Gennai; Bruno Gilli; Paul Giordano; Ph. Gitton; Stephane Guisard; Nico Housen; Alexis Huxley; Pierre Kervella; M. Kiekebusch; Bertrand Koehler; Samuel A. Leveque; Antonio Longinotti; Serge Menardi; S. Morel; Francesco Paresce; T. Phan Duc; A. Richichi; M. Schöller

The Very Large Telescope (VLT) Observatory on Cerro Paranal (2635 m) in Northern Chile is approaching completion. After the four 8-m Unit Telescopes (UT) individually saw first light in the last years, two of them were combined for the first time on October 30, 2001 to form a stellar interferometer, the VLT Interferometer. The remaining two UTs will be integrated into the interferometric array later this year. In this article, we will describe the subsystems of the VLTI and the planning for the following years.


Proceedings of SPIE | 2004

VLTI technical advances: present and future

Andreas Glindemann; Maja Albertsen; Luigi Andolfato; Gerardo Avila; Pascal Ballester; Bertrand Bauvir; Francoise Delplancke; Frederic Derie; Martin Dimmler; Philippe Duhoux; Emmanuel di Folco; R. Frahm; Emmanuel Galliano; Bruno Gilli; Paul Giordano; Philippe B. Gitton; Stephane Guisard; Nico Housen; Christian A. Hummel; Alexis Huxley; Robert Karban; Pierre Kervella; M. Kiekebusch; Bertrand Koehler; Samuel A. Leveque; Tom Licha; Antonio Longinotti; Derek J. McKay; Serge Menardi; Guy J. Monnet

The Very Large Telescope Interferometer (VLTI) on Cerro Paranal (2635 m) in Northern Chile reached a major milestone in September 2003 when the mid infrared instrument MIDI was offered for scientific observations to the community. This was only nine months after MIDI had recorded first fringes. In the meantime, the near infrared instrument AMBER saw first fringes in March 2004, and it is planned to offer AMBER in September 2004. The large number of subsystems that have been installed in the last two years - amongst them adaptive optics for the 8-m Unit Telescopes (UT), the first 1.8-m Auxiliary Telescope (AT), the fringe tracker FINITO and three more Delay Lines for a total of six, only to name the major ones - will be described in this article. We will also discuss the next steps of the VLTI mainly concerned with the dual feed system PRIMA and we will give an outlook to possible future extensions.


Proceedings of SPIE | 2006

PRIMA for the VLTI: a status report

Francoise Delplancke; Frederic Derie; Samuel A. Leveque; Serge Menardi; Roberto Abuter; Luigi Andolfato; Pascal Ballester; Jeroen de Jong; Nicola Di Lieto; Philippe Duhoux; R. Frahm; Philippe B. Gitton; Andreas Glindemann; Ralf Palsa; Florence Puech; Johannes Sahlmann; Nicolas Schuhler; Thanh Phan Duc; Bruno Valat; Anders Wallander

PRIMA, the Phase-Referenced Imaging and Micro-arcsecond Astrometry facility for the Very Large Telescope Interferometer, is now nearing the end of its manufacturing phase. An intensive test period of the various sub-systems (star separators, fringe sensor units and incremental metrology) and of their interactions in the global system will start in Garching as soon as they are delivered. The status and performances of the individual sub-systems are presented in this paper as well as the proposed observation and calibration strategy to reach the challenging goal of high-accuracy differential astrometry at 10 μas level.


Astronomical Telescopes and Instrumentation | 1998

VLT Data Flow System: from concepts to operations

Peter J. Quinn; Miguel A. Albrecht; Pascal Ballester; Klaus Banse; Alberto Maurizio Chavan; Preben Grosbol; Michele Peron; David R. Silva

In order to realize the optimal scientific return from the VLT, ESO has undertaken to develop an end-to-end data flow system from proposal entry to science archive. The VLT Data Flow System (DFS) is being designed and implemented by the ESO Data Management and Operations Division in collaboration with VLT and Instrumentation Divisions. Tests of the DFS started in October 1996 on ESOs New Technology Telescope. Since then, prototypes of the Phase 2 Proposal Entry System, VLT Control System Interface, Data Pipelines, On-line Data Archive, Data Quality Control and Science Archive System have been tested. Several major DFS components have been run under operational conditions since February 1997. This paper describes the current status of the VLT DFS, the technological and operational challenges of such a system and the planing for VLT operations beginning in early 1999.

Collaboration


Dive into the Pascal Ballester's collaboration.

Top Co-Authors

Avatar

Andrea Modigliani

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Cyrus Sabet

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Klaus Banse

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

A. Richichi

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Michele Peron

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Andreas Glindemann

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Carlo Izzo

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Markus Wittkowski

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Pierre Kervella

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Ralf Palsa

European Southern Observatory

View shared research outputs
Researchain Logo
Decentralizing Knowledge