Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pascal Cherrier is active.

Publication


Featured researches published by Pascal Cherrier.


Journal de Mathématiques Pures et Appliquées | 2002

Einstein-Kähler metrics on a class of bundles involving integral weights

Adnène Ben Abdesselem; Pascal Cherrier

Abstract We prove that some compact complex bundles, defined over P d 1 −1 ×⋯× P d n −1 (where P d is the complex projective space of complex dimension d ), and depending on n integral weights a 1 ,…, a n , have positive first Chern class if 1⩽ a h ⩽ d h −1 for all h , and carry Einstein–Kahler metrics when a 1 =⋯= a n and d 1 =⋯= d n .


Bulletin Des Sciences Mathematiques | 2000

Einstein–Kähler metrics on certain complex bundles

Adnène Ben Abdesselem; Pascal Cherrier

Abstract We study a class of compact complex manifolds, with positive first Chern class, fibered over products of projective spaces. We prove that these bundles carry Einstein–Kahler metrics when the projective spaces of the basis have the same dimension. When this dimensional condition is not satisfied, we estimate their Ricci tensor in another paper.


Comptes Rendus De L Academie Des Sciences Serie I-mathematique | 1997

Equations de type monge-ampère sur certaines variétés de fano

Adnène Ben Abdesselem; Pascal Cherrier

Resume On met en evidence un intervalle de temps pour lequel des equations de Monge-Ampere sur certaines varietes de Fano admettent des solutions.


Archive | 2015

Semi-strong Solutions, m = 2, k = 1

Pascal Cherrier; Albert Milani

In this chapter we prove Theorem 1.4.3 on the existence and uniqueness of semi-strong solutions of problem (VKH) when m = 2 (recall that, by Definition 1.4.1, if m = 2 there is only one kind of semi-strong solution, corresponding to k = 1). Accordingly, we assume that


Archive | 2015

Operators, Spaces, and Main Results

Pascal Cherrier; Albert Milani


Archive | 2015

The Hardy Space \(\mathcal{H}^{1}\) and the Case m = 1

Pascal Cherrier; Albert Milani

\displaystyle{ u_{0} \in H^{3}\,,\qquad u_{ 1} \in H^{1}\,,\qquad \varphi \in S_{ 2,1}(T) = C([0,T];H^{5}) }


Archive | 2015

Strong Solutions, m + k ≥ 4

Pascal Cherrier; Albert Milani


Archive | 2015

The Parabolic Case

Pascal Cherrier; Albert Milani

(4.1) [recall ( 1.137)], and look for solutions of problem (VKH) in the space \(\mathcal{X}_{2,1}(\tau )\), for some τ ∈ ]0, T].


Comptes rendus de l'Académie des sciences. Série 1, Mathématique | 1993

Métriques d'Einstein-Kähler sur certaines variétés kählériennes à première classe de Chern positive

A. Ben Abdesselem; Pascal Cherrier

In this chapter we introduce the function spaces in which we build our solution theory for problems (VKH) and (VKP), and study the main properties of the operator N defined in (8) in these spaces.


Mathematische Zeitschrift | 2000

Estimation of Ricci tensor on certain Fano manifolds

Adnène Ben Abdesselem; Pascal Cherrier

In this chapter we first review a number of results on the regularity of the functions N = N(u1, … , u m ) and f = f(u) in the framework of the Hardy space \(\mathcal{H}^{1}\), and then use these results to prove the well-posedness of the von Karman equations (3) and (4) in \(\mathbb{R}^{2}\).

Collaboration


Dive into the Pascal Cherrier's collaboration.

Top Co-Authors

Avatar

Albert Milani

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge