Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pascal Comte is active.

Publication


Featured researches published by Pascal Comte.


Nature | 1998

Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies

Udo Bach; D. Lupo; Pascal Comte; Jacques-E. Moser; F. Weissörtel; Josef Salbeck; H. Spreitzer; Michael Grätzel

Solar cells based on dye-sensitized mesoporous films of TiO2 arelow-cost alternatives to conventional solid-state devices. Impressive solar-to-electrical energy conversion efficiencies have been achieved with such films when used in conjunction with liquid electrolytes. Practical advantages may be gained by the replacement of the liquid electrolyte with a solid charge-transport material. Inorganic p-type semiconductors, and organic materials have been tested in this regard, but in all cases the incident monochromatic photon-to-electron conversion efficiency remained low. Here we describe a dye-sensitized heterojunction of TiO2 with the amorphous organic hole-transport material 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9′-spirobifluorene (OMeTAD; refs. 10 and 11). Photoinduced charge-carrier generation at the heterojunction is very efficient. A solar cell based on OMeTAD converts photons to electric current with a high yield of 33%.


Journal of The Electrochemical Society | 2006

Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes

Takurou N. Murakami; Seigo Ito; Qing Wang; Md. K. Nazeeruddin; Takeru Bessho; Ilkay Cesar; Paul Liska; Robin Humphry-Baker; Pascal Comte; Peter Pechy; Michael Grätzel

Carbon black was employed as the catalyst for triiodide reduction on fluorine-doped tin oxide glass substrates (FTO-glass) used as counter electrodes in platinum-free dye-sensitized solar cells. The fill factors were strongly dependent on the thickness of the carbon layer, and the light energy conversion efficiency also increased up to a thickness of 10 μm. The charge-transfer resistance (R ct ) of the carbon counter electrode decreased with the thickness of the carbon layer. The R ct for the thicker carbon layer is less than three times that for the platinized FTO-glass. The highest cell efficiency was 9.1% under 100 mW cm -2 light intensity (1 sun AM 1.5 light, J sc = 16.8 mA cm -2 , V oc = 789.8 mV, fill factor = 0.685).


Chemical Communications | 2008

High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye

Seigo Ito; Hidetoshi Miura; Satoshi Uchida; Masakazu Takata; Koichi Sumioka; Paul Liska; Pascal Comte; Peter Pechy; Michael Grätzel

An indoline dye (D205), the synthesis method of which is disclosed in this report, gave high-efficiency organic dye-sensitized solar cells (9.52%) using an anti-aggregation reagent (chenodeoxycholic acid).


ACS Nano | 2010

Dye-Sensitized Solar Cells Employing a Single Film of Mesoporous TiO2 Beads Achieve Power Conversion Efficiencies Over 10%

Frédéric Sauvage; Dehong Chen; Pascal Comte; Fuzhi Huang; Leo-Philipp Heiniger; Yi-Bing Cheng; Rachel A. Caruso; Michael Graetzel

Dye-sensitized solar cells employing mesoporous TiO(2) beads have demonstrated longer electron diffusion lengths and extended electron lifetimes over Degussa P25 titania electrodes due to the well interconnected, densely packed nanocrystalline TiO(2) particles inside the beads. Careful selection of the dye to match the dye photon absorption characteristics with the light scattering properties of the beads have improved the light harvesting and conversion efficiency of the bead electrode in the dye-sensitized solar cell. This has resulted in a solar to electric power conversion efficiency (PCE) of greater than 10% (10.6% for Ru(II)-based dye C101 and 10.7% using C106) for the first time using a single screen-printed titania layer cell construction (that is, without an additional scattering layer).


Journal of the American Chemical Society | 2014

Influence of the Donor Size in D−π–A Organic Dyes for Dye-Sensitized Solar Cells

Jiabao Yang; Paramaguru Ganesan; Joël Teuscher; Thomas Moehl; YongJoo Kim; Chenyi Yi; Pascal Comte; Kai Pei; Thomas W. Holcombe; Mohammad Khaja Nazeeruddin; Jianli Hua; Shaik M. Zakeeruddin; He Tian; Michael Grätzel

We report two new molecularly engineered push-pull dyes, i.e., YA421 and YA422, based on substituted quinoxaline as a π-conjugating linker and bulky-indoline moiety as donor and compared with reported IQ4 dye. Benefitting from increased steric hindrance with the introduction of bis(2,4-dihexyloxy)benzene substitution on the quinoxaline, the electron recombination between redox electrolyte and the TiO2 surface is reduced, especially in redox electrolyte employing Co(II/III) complexes as redox shuttles. It was found that the open circuit photovoltages of IQ4, YA421, and YA422 devices with cobalt-based electrolyte are higher than those with iodide/triiodide electrolyte by 34, 62, and 135 mV, respectively. Moreover, the cells employing graphene nanoplatelets on top of gold spattered film as a counter electrode (CE) show lower charge-transfer resistance compared to platinum as a CE. Consequently, YA422 devices deliver the best power conversion efficiency due to higher fill factor, reaching 10.65% at AM 1.5 simulated sunlight. Electrochemical impedance spectroscopy and transient absorption spectroscopy analysis were performed to understand the electrolyte influence on the device performances with different counter electrode materials and donor structures of donor-π-acceptor dyes. Laser flash photolysis experiments indicate that even though the dye regeneration of YA422 is slower than that of the other two dyes, the slower back electron transfer of YA422 contributes to the higher device performance.


Langmuir | 2009

Regenerative PbS and CdS Quantum Dot Sensitized Solar Cells with a Cobalt Complex as Hole Mediator

Hyo Joong Lee; Peter Chen; Soo-Jin Moon; Frédéric Sauvage; Kevin Sivula; Takeru Bessho; Daniel R. Gamelin; Pascal Comte; Shaik M. Zakeeruddin; Sang Il Seok; Michael Grätzel; Md. K. Nazeeruddin

Metal sulfide (PbS and CdS) quantum dots (QDs) were prepared over mesoporous TiO2 films by improved successive ionic layer adsorption and reaction (SILAR) processes. The as-prepared QD-sensitized electrodes were combined with a cobalt complex redox couple [Co(o-phen)3]2+/3+ to make a regenerative liquid-type photovoltaic cell. The optimized PbS QD-sensitized solar cells exhibited promising incident photon-to-current conversion efficiency (IPCE) of over 50% and an overall conversion efficiency of 2% at 0.1 sun in a regenerative mode. The overall photovoltaic performance of the PbS QD-sensitized cells was observed to be dependent on the final turn of the SILAR process, giving a better result when the final deposition was Pb2+, not S2-. However, in the case of CdS QD-sensitized cells, S2- termination was better than that of Cd2+. The cobalt complex herein used as a regenerative redox couple was found to be more efficient in generating photocurrents from PbS QD cells than the typical hole scavenger Na2S in a three-electrode configuration. The CdS-sensitized cell with this redox mediator also showed better defined current-voltage curves and an IPCE reaching 40%.


Solar Energy Materials and Solar Cells | 1999

A contribution to the optical design of dye-sensitized nanocrystalline solar cells

Guido Rothenberger; Pascal Comte; Michael Grätzel

The absorption of a large fraction of the incident solar radiation by the photoactive layer of dye-sensitized, liquid-junction photovoltaic cells is an important factor for achieving useful photoelectric conversion efficiencies. A model is presented that estimates the enhancement of optical absorption that can be obtained from light scattering in the porous nanocrystalline films used in these cells and from reflection at the back electrode. The model is applied to the optical characterization of two films, a transparent, and a strongly scattering porous titania sample.


Journal of Physical Chemistry B | 1998

Efficient Lateral Electron Transport inside a Monolayer of Aromatic Amines Anchored on Nanocrystalline Metal Oxide Films.

Pierre Bonhote; Eric Gogniat; Sophie Tingry; Christophe Jean Alexandre Barbe; Nicolas Vlachopoulos; Frank Lenzmann; Pascal Comte; Michael Grätzel

A monolayer of a phosphonated triarylamine adsorbed on nanocrystalline TiO2, ZrO2, or Al2O3 film deposited on conducting glass displays reversible electrochemical and electrochromic behavior although the redox potential of the electroactive molecules (0.80 V vs NHE) lies in the forbidden band of the semiconducting or insulating oxides. The mechanism of charge transport was found to involve hole injection from the conducting support followed by lateral electron hopping within the monolayer. The apparent diffusion coefficient ranged from 2.8 × 10(-12) m(2) s(-1) in the neat 1-ethyl-2-methylimidazolium bis(trifluoromethylsulfonyl)imide (EtMeIm(+)Tf2N(-)) to 1.1 × 10(-11) m(2) s(-1) in acetonitrile + 2 M EtMeIm(+)Tf2N(-). A percolation threshold for electronic conductivity was found at a surface coverage corresponding to 50% of a full monolayer.


Chemical Science | 2014

New pyrido[3,4-b]pyrazine-based sensitizers for efficient and stable dye-sensitized solar cells

Weijiang Ying; Jiabao Yang; Mateusz Wielopolski; Thomas Moehl; Jacques-E. Moser; Pascal Comte; Jianli Hua; Shaik M. Zakeeruddin; He Tian; Michael Grätzel

A series of new pyrido[3,4-b]pyrazine-based organic sensitizers (PP-I and APP-I–IV) containing different donors and π-spacers have been synthesized and employed in dye-sensitized solar cells (DSSCs). The absorption spectra properties of dyes are analysed by density functional theory (DFT). The calculated results in combination with the experiments suggest that the absorption characteristics and excited state features will mainly be dominated by charge transfer transitions from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) and to higher LUMO orbitals. Furthermore, attaching the octyloxy groups significantly extends the π-conjugation of the donor in APP-IV, which raises the HOMO energy and facilitates its oxidation. As a consequence, APP-IV exhibits the lowest HOMO–LUMO energy gap among all dyes, which, in turn, corresponds well with the red shift of the absorption spectra. Transient photovoltage and photocurrent decay experiments as well as electrochemical impedance spectroscopy indicate that the electron lifetime and charge recombination resistance are increased due to the introduction of octyloxy chains on the donor unit, resulting in the high photovoltage based on APP-IV. It was found that APP-IV based DSSCs with liquid electrolyte display the highest power conversion efficiency (PCE) of 7.12%. Importantly, a PCE of 6.20% has been achieved for APP-IV based DSSCs with ionic-liquid electrolytes and retained 97% of the initial value after continuous light soaking for 1000 h at 60 °C. This renders these pyrido[3,4-b]pyrazine-based sensitizers quite promising candidates for highly efficient and stable DSSCs.


ACS Applied Materials & Interfaces | 2013

Low temperature crystalline titanium dioxide by atomic layer deposition for dye-sensitized solar cells

Aravind Kumar Chandiran; Aswani Yella; Morgan Stefik; Leo-Philipp Heiniger; Pascal Comte; Mohammad Khaja Nazeeruddin; Michael Grätzel

Low-temperature processing of dye-sensitized solar cells (DSCs) is crucial to enable commercialization with low-cost, plastic substrates. Prior studies have focused on mechanical compression of premade particles on plastic or glass substrates; however, this did not yield sufficient interconnections for good carrier transport. Furthermore, such compression can lead to more heterogeneous porosity. To circumvent these problems, we have developed a low-temperature processing route for photoanodes where crystalline TiO2 is deposited onto well-defined, mesoporous templates. The TiO2 is grown by atomic layer deposition (ALD), and the crystalline films are achieved at a growth temperature of 200 °C. The ALD TiO2 thickness was systematically studied in terms of charge transport and performance to lead to optimized photovoltaic performance. We found that a 15 nm TiO2 overlayer on an 8 μm thick SiO2 film leads to a high power conversion efficiency of 7.1% with the state-of-the-art zinc porphyrin sensitizer and cobalt bipyridine redox mediator.

Collaboration


Dive into the Pascal Comte's collaboration.

Top Co-Authors

Avatar

Michael Grätzel

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Mohammad Khaja Nazeeruddin

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Paul Liska

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Shaik M. Zakeeruddin

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Seigo Ito

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Peter Pechy

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Robin Humphry-Baker

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Md. K. Nazeeruddin

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Jacques-E. Moser

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge