Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pascal Degrace is active.

Publication


Featured researches published by Pascal Degrace.


Diabetes | 2010

CB1 Antagonism Exerts Specific Molecular Effects on Visceral and Subcutaneous Fat and Reverses Liver Steatosis in Diet-Induced Obese Mice

Tony Jourdan; Louiza Djaouti; Laurent Demizieux; Joseph Gresti; Bruno Vergès; Pascal Degrace

OBJECTIVE The beneficial effects of the inactivation of endocannabinoid system (ECS) by administration of antagonists of the cannabinoid receptor (CB) 1 on several pathological features associated with obesity is well demonstrated, but the relative contribution of central versus peripheral mechanisms is unclear. We examined the impact of CB1 antagonism on liver and adipose tissue lipid metabolism in a mouse model of diet-induced obesity. RESEARCH DESIGN AND METHODS Mice were fed either with a standard diet or a high-sucrose high-fat (HSHF) diet for 19 weeks and then treated with the CB1-specific antagonist SR141716 (10 mg · kg−1 · day−1) for 6 weeks. RESULTS Treatment with SR141716 reduced fat mass, insulin levels, and liver triglycerides primarily increased by HSHF feeding. Serum adiponectin levels were restored after being reduced in HSHF mice. Gene expression of scavenger receptor class B type I and hepatic lipase was induced by CB1 blockade and associated with an increase in HDL-cholesteryl ether uptake. Concomitantly, the expression of CB1, which was strongly increased in the liver and adipose tissue of HSHF mice, was totally normalized by the treatment. Interestingly, in visceral but not subcutaneous fat, genes involved in transport, synthesis, oxidation, and release of fatty acids were upregulated by HSHF feeding, while this effect was counteracted by CB1 antagonism. CONCLUSIONS A reduction in the CB1-mediated ECS activity in visceral fat is associated with a normalization of adipocyte metabolism, which may be a determining factor in the reversion of liver steatosis induced by treatment with SR141716.


FEBS Letters | 2003

Association of liver steatosis with lipid oversecretion and hypotriglyceridaemia in C57BL/6j mice fed trans-10,cis-12-linoleic acid

Pascal Degrace; Laurent Demizieux; Joseph Gresti; Jean-Michel Chardigny; Jean-Louis Sébédio; Pierre Clouet

Conjugated linoleic acids (CLA) have recently been recognized to reduce body fat and plasma lipids in some animals. This study demonstrated that the steatosis accompanying the fat loss induced by trans‐10,cis‐12‐C18:2 (CLA2) and not cis‐9,trans‐11‐C18:2 (CLA1) isomer in C57BL/6j mice was not due to an alteration of the liver lipoprotein production that was even increased. The 3‐fold decrease in plasma triacylglycerol contents and the induction of mRNA expression of low‐density lipoprotein receptors concomitantly observed in CLA2‐fed mice suggested an increase in the lipoprotein clearance at the level of the liver itself. CLA1 feeding produced similar but attenuated effects on triglyceridaemia only.


Journal of Lipid Research | 2006

Upregulation of liver VLDL receptor and FAT/CD36 expression in LDLR−/− apoB100/100 mice fed trans-10,cis-12 conjugated linoleic acid

Pascal Degrace; Bastien Moindrot; Ismaël Mohamed; Joseph Gresti; Zhen-Yu Du; Jean-Michel Chardigny; Jean-Louis Sébédio; Pierre Clouet

This study explores the mechanisms responsible for the fatty liver setup in mice fed trans-10,cis-12 conjugated linoleic acid (t10c12 CLA), hypothesizing that an induction of low density lipoprotein receptor (LDLR) expression is associated with lipid accumulation. To this end, the effects of t10c12 CLA treatment on lipid parameters, serum lipoproteins, and expression of liver lipid receptors were measured in LDLR−/− apoB100/100 mice as a model of human familial hypercholesterolemia itself depleted of LDLR. Mice were fed t10c12 CLA over 2 or 4 weeks. We first observed that the treatment induced liver steatosis, even in the absence of LDLR. Mice treated for 2 weeks exhibited hypertriglyceridemia with high levels of VLDL and HDL, whereas a 4 week treatment inversely induced a reduction of serum triglycerides (TGs), essentially through a decrease in VLDL levels. In the absence of LDLR, the mRNA levels of other proteins, such as VLDL receptor, lipoprotein lipase, and fatty acid translocase, usually not expressed in the liver, were upregulated, suggesting their involvement in the steatosis setup and lipoprotein clearance. The data also suggest that the TG-lowering effect induced by t10c12 CLA treatment was attributable to both the reduction of circulating free fatty acids in response to the severe lipoatrophy and the high capacity of liver to clear off plasma lipids.


British Journal of Nutrition | 2006

Biochemical hepatic alterations and body lipid composition in the herbivorous grass carp (Ctenopharyngodon idella) fed high-fat diets.

Zhen-Yu Du; Pierre Clouet; Wenhui Zheng; Pascal Degrace; Li-Xia Tian; Yong-Jian Liu

High-fat diets may have favourable effects on growth of some carnivorous fish because of the protein-sparing effect of lipids, but high-fat diets also exert some negative impacts on flesh quality. The goal of the study was therefore to determine the effects of fat-enriched diets in juvenile grass carp (Ctenopharyngodon idella) as a typical herbivorous fish on growth and possible lipid metabolism alterations. Three isonitrogenous diets containing 2, 6 or 10 % of a mixture of lard, maize oil and fish oil (1:1:1, by weight) were applied to fish for 8 weeks in a recirculation system. Data show that feeding diets with increasing lipid levels resulted in lowered feed intake, decreased growth and feed efficiency, and increased mesenteric fat tissue weight. Concomitantly, alteration of lipoprotein synthesis and greater level of lipid peroxidation were apparent in blood. In liver, muscle and mesenteric fat tissue, the percentages of alpha-linolenic acid and DHA were significantly increased or tended to increase with higher dietary lipid levels. Biochemical activity measurements performed on liver showed that, with the increase in dietary lipid level, there was a decrease in both mitochondrial and peroxisomal fatty acid oxidation capacities, which might contribute, at least in part, to the specific accumulation of alpha-linolenic acid and DHA into cells more active in membrane building. On the whole, grass carp have difficulty in energetically utilising excess dietary fat, especially when enriched in n-3 PUFA that are susceptible to peroxidation.


Journal of Lipid Research | 2002

Conjugated linoleic acid isomers in mitochondria evidence for an alteration of fatty acid oxidation

Laurent Demizieux; Pascal Degrace; Joseph Gresti; Olivier Loreau; Jean-Pierre Noël; Jean-Michel Chardigny; Jean-Louis Sébédio; Pierre Clouet

The beneficial effects exerted by low amounts of conjugated linoleic acids (CLA) suggest that CLA are maximally conserved and raise the question about their mitochondrial oxidizability. Cis-9,trans-11-C18:2 (CLA1) and trans-10,cis-12-C18:2 (CLA2) were compared to cis-9,cis-12-C18:2 (linoleic acid; LA) and cis-9-C16:1 (palmitoleic acid; PA), as substrates for total fatty acid (FA) oxidation and for the enzymatic steps required for the entry of FA into rat liver mitochondria. Oxygen consumption rate was lowest when CLA1 was used as a substrate with that on CLA2 being intermediate between it and the respiration on LA and PA. The order of the radiolabeled FA oxidation rate was PA >> LA > CLA2 > CLA1. Transesterification to acylcarnitines of the octadecadienoic acids were similar, while uptake across inner membranes of CLA1 and, to a lesser extent, of CLA2 was greater than that of LA or PA. Prior oxidation of CLA1 or CLA2 made re-isolated mitochondria much less capable of oxidising PA or LA under carnitine-dependent conditions, but without altering the carnitine-independent oxidation of octanoic acid. Therefore, the CLA studied appeared to be both poorly oxidizable and capable of interfering with the oxidation of usual FA at a step close to the beginning of the β-oxidative cycle.


Hepatology | 2012

Antagonism of peripheral hepatic cannabinoid receptor-1 improves liver lipid metabolism in mice: Evidence from cultured explants†‡

Tony Jourdan; Laurent Demizieux; Joseph Gresti; Louiza Djaouti; Lila Gaba; Bruno Vergès; Pascal Degrace

It is well established that inactivation of the central endocannabinoid system (ECS) through antagonism of cannabinoid receptor 1 (CB1R) reduces food intake and improves several pathological features associated with obesity, such as dyslipidemia and liver steatosis. Nevertheless, recent data indicate that inactivation of peripheral CB1R could also be directly involved in the control of lipid metabolism independently of central CB1R. To further investigate this notion, we tested the direct effect of the specific CB1R antagonist, SR141716, on hepatic carbohydrate and lipid metabolism using cultured liver slices. CB1R messenger RNA expression was strongly decreased by SR141716, whereas it was increased by the CB1R agonist, arachidonic acid N‐hydroxyethylamide (AEA), indicating the effectiveness of treatments in modulating ECS activity in liver explants both from lean or ob/ob mice. The measurement of O2 consumption revealed that SR141716 increased carbohydrate or fatty acid utilization, according to the cellular hormonal environment. In line with this, SR141716 stimulated ß‐oxidation activity, and the role of CB1R in regulating this pathway was particularly emphasized when ECS was hyperactivated by AEA and in ob/ob tissue. SR141716 also improved carbohydrate and lipid metabolism, blunting the AEA‐induced increase in gene expression of proteins related to lipogenesis. In addition, we showed that SR141716 induced cholesterol de novo synthesis and high‐density lipoprotein uptake, revealing a relationship between CB1R and cholesterol metabolism. Conclusion: These data suggest that blocking hepatic CB1R improves both carbohydrate and lipid metabolism and confirm that peripheral CB1R should be considered as a promising target to reduce cardiometabolic risk in obesity. (HEPATOLOGY 2011)


Poultry Science | 2009

Gene expression and protein content in relation to intramuscular fat content in Muscovy and Pekin ducks

G. Saez; S. Davail; G. Gentès; Jean-François Hocquette; T. Jourdan; Pascal Degrace; E. Baéza

Independent of their nutritional condition, Pekin ducks always exhibit higher i.m. fat content than Muscovy ducks. To understand this difference between species, the expression level of genes involved in lipid metabolism was analyzed in the pectoralis major muscle of Pekin and Muscovy ducks ad libitum-fed or overfed. The lipoprotein lipase (LPL) gene expression was not different between species and not influenced by overfeeding. The protein content for LPL was higher in Pekin ducks than in Muscovy ducks when birds were ad libitum-fed, whereas in overfed ducks, we found no difference between species. Adipocyte fatty acid-binding protein (A-FABP) gene expression and protein content were higher in Pekin ducks than in Muscovy ducks for each nutritional condition (suggesting a higher intracellular transport within i.m. adipocytes of fatty acids mainly provided by liver for this species). Overfeeding did not affect the expression of genes involved in oxidation [carnitine palmitoyl transferase 1A (CPT1A), cytochrome-c oxidase 4 (COX4), succinyl-coenzyme A:3-ketoacid coenzyme A transferase (SCOT)] but increased the expression of fatty acid synthase (FAS) involved in lipogenesis. For all nutritional conditions, Pekin duck exhibited higher expression levels of CPT1A, COX4, SCOT, and FAS than Muscovy ducks. Results for mRNA SCOT suggested that the muscles of Pekin ducks use ketone bodies as an energy source. In conclusion, i.m. lipogenesis could contribute to the i.m. fat, particularly in Pekin ducks.


Biochimica et Biophysica Acta | 2013

Dietary eicosapentaenoic acid supplementation accentuates hepatic triglyceride accumulation in mice with impaired fatty acid oxidation capacity

Zhen-Yu Du; Tao Ma; Bjørn Liaset; Alison H. Keenan; Pedro Araujo; Erik-Jan Lock; Laurent Demizieux; Pascal Degrace; Livar Frøyland; Karsten Kristiansen; Lise Madsen

Reduced mitochondrial fatty acid (FA) β-oxidation can cause accumulation of triglyceride in liver, while intake of eicosapentaenoic acid (EPA) has been recommended as a promising novel therapy to decrease hepatic triglyceride content. However, reduced mitochondrial FA β-oxidation also facilitates accumulation of EPA. To investigate the interplay between EPA administration, mitochondrial activity and hepatic triglyceride accumulation, we investigated the effects of EPA administration to carnitine-deficient mice with impaired mitochondrial FA β-oxidation. C57BL/6J mice received a high-fat diet supplemented or not with 3% EPA in the presence or absence of 500 mg mildronate/kg/day for 10 days. Liver mitochondrial and peroxisomal oxidation, lipid classes and FA composition were determined. Histological staining was performed and mRNA level of genes related to lipid metabolism and inflammation in liver and adipose tissue was determined. Levels of pro-inflammatory eicosanoids and cytokines were measured in plasma. The results showed that mildronate treatment decreased hepatic carnitine concentration and mitochondrial FA β-oxidation and induced severe triglyceride accumulation accompanied by elevated systemic inflammation. Surprisingly, inclusion of EPA in the diet exacerbated the mildronate-induced triglyceride accumulation. This was accompanied by a considerable increase of EPA accumulation while decreased total n-3/n-6 ratio in liver. However, inclusion of EPA in the diet attenuated the mildronate-induced mRNA expression of inflammatory genes in adipose tissue. Taken together, dietary supplementation with EPA exacerbated the triglyceride accumulation induced by impaired mitochondrial FA β-oxidation. Thus, further thorough evaluation of the potential risk of EPA supplementation as a therapy for NAFLD associated with impaired mitochondrial FA oxidation is warranted.


Molecular and Cellular Biochemistry | 2004

Fatty acid oxidation and related gene expression in heart depleted of carnitine by mildronate treatment in the rat

Pascal Degrace; Laurent Demizieux; Joseph Gresti; Marcelline Tsoko; Agnès André; Luc Demaison; Pierre Clouet

The metabolic and genic effects induced by a 20-fold lowering of carnitine content in the heart were studied in mildronate-treated rats. In the perfused heart, the proportion of palmitate taken up then oxidized was 5–10% lower, while the triacylglycerol (TAG) formation was 100% greater than in controls. The treatment was shown to increase the maximal capacity of heart homogenates to oxidize palmitate, the mRNA level of carnitine palmitoyltransferase I (CPT-I) isoforms, the specific activity of CPT-I in subsarcolemmal mitochondria and the total carnitine content of isolated mitochondria. Concomitantly, the increased mRNA expression of lipoprotein lipase, fatty acid translocase and enzymes of TAG synthesis was associated with a 5- and 2-times increase in serum TAG and free fatty acid contents, respectively. The compartmentation of carnitine at its main functional location was expected to allow the increased CPT-I activity to ensure in vivo correct fatty acid oxidation rates. All the inductions related to fatty acid transport, oxidation and esterification most likely stem from the abundance of blood lipids providing cardiomyocytes with more fatty acids.


Journal of Nutrition | 2009

Liver Carbohydrate and Lipid Metabolism of Insulin-Deficient Mice Is Altered by trans-10, cis-12 Conjugated Linoleic Acid

Tony Jourdan; Louiza Djaouti; Laurent Demizieux; Joseph Gresti; Bruno Vergès; Pascal Degrace

Feeding mice the trans-10, cis-12 (t10c12) conjugated linoleic acid (CLA) isomer is associated with lipodystrophy, insulin resistance, hyperinsulinemia, and liver steatosis. It has been hypothesized that CLA-induced liver steatosis is the result of increased hepatic lipogenesis stimulated by high insulin levels. We studied the effects of a 12-d t10c12CLA treatment (1 g/100 g diet) on liver carbohydrate and lipid metabolism in control and streptozotocin (STZ)-injected mice. STZ mice were characterized by insulin deficiency, hypertriglyceridemia, and depletion of liver triglyceride and glycogen. Remarkably, feeding t10c12CLA to diabetic mice (STZ-CLA) normalized these variables. Reconstitution of fat stores in the livers of STZ-CLA mice was associated with lower fatty acid (FA) oxidation rates and greater malonyl-CoA concentration than in STZ mice. FA translocase and VLDL receptor mRNA levels were greater in STZ-CLA than in STZ mice, suggesting that t10c12CLA increased liver lipid uptake. Phosphoenolpyruvate carboxykinase mRNA levels and AMP kinase phosphorylation were lower in STZ-CLA than in STZ mice, indicating that t10c12CLA may reduce glucogenic activity and promote glycogenesis in diabetic mice. Because glycemia and glucokinase expression were not modified by t10c12CLA treatment, we postulated that glycogen accumulation is likely not the result of an effect of t10c12CLA on plasma glucose utilization, but rather is due to the contribution of lactate, the concentration of which was higher in muscle of STZ-CLA mice. The results demonstrate that t10c12CLA stimulates liver lipid accumulation in the absence of insulin and, thus, suggest that t10c12CLA can improve liver carbohydrate and lipid metabolism in type I diabetic mice.

Collaboration


Dive into the Pascal Degrace's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhen-Yu Du

East China Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Louis Sébédio

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jean-Michel Chardigny

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge