Pascal Fanise
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pascal Fanise.
Sensors | 2016
Erwan Motte; Mehrez Zribi; Pascal Fanise; Alejandro Egido; José Darrozes; Amen Al-Yaari; Nicolas Baghdadi; Frédéric Baup; Sylvia Dayau; Rémy Fieuzal; Pierre-Louis Frison; Dominique Guyon; Jean-Pierre Wigneron
Global Navigation Satellite System-Reflectometry (GNSS-R) has emerged as a remote sensing tool, which is complementary to traditional monostatic radars, for the retrieval of geophysical parameters related to surface properties. In the present paper, we describe a new polarimetric GNSS-R system, referred to as the GLObal navigation satellite system Reflectometry Instrument (GLORI), dedicated to the study of land surfaces (soil moisture, vegetation water content, forest biomass) and inland water bodies. This system was installed as a permanent payload on a French ATR42 research aircraft, from which simultaneous measurements can be carried out using other instruments, when required. Following initial laboratory qualifications, two airborne campaigns involving nine flights were performed in 2014 and 2015 in the Southwest of France, over various types of land cover, including agricultural fields and forests. Some of these flights were made concurrently with in situ ground truth campaigns. Various preliminary applications for the characterisation of agricultural and forest areas are presented. Initial analysis of the data shows that the performance of the GLORI instrument is well within specifications, with a cross-polarization isolation better than −15 dB at all elevations above 45°, a relative polarimetric calibration accuracy better than 0.5 dB, and an apparent reflectivity sensitivity better than −30 dB, thus demonstrating its strong potential for the retrieval of land surface characteristics.
Sensors | 2011
Mehrez Zribi; Mickaël Pardé; Jacqueline Boutin; Pascal Fanise; Danièle Hauser; Monique Dechambre; Yann Kerr; Marion Leduc-Leballeur; Gilles Reverdin; Niels Skou; Sten Schmidl Søbjærg; Clément Albergel; Jean-Christophe Calvet; Jean-Pierre Wigneron; Ernesto Lopez-Baeza; A. Rius; Joseph Tenerelli
The “Cooperative Airborne Radiometer for Ocean and Land Studies” (CAROLS) L-Band radiometer was designed and built as a copy of the EMIRAD II radiometer constructed by the Technical University of Denmark team. It is a fully polarimetric and direct sampling correlation radiometer. It is installed on board a dedicated French ATR42 research aircraft, in conjunction with other airborne instruments (C-Band scatterometer—STORM, the GOLD-RTR GPS system, the infrared CIMEL radiometer and a visible wavelength camera). Following initial laboratory qualifications, three airborne campaigns involving 21 flights were carried out over South West France, the Valencia site and the Bay of Biscay (Atlantic Ocean) in 2007, 2008 and 2009, in coordination with in situ field campaigns. In order to validate the CAROLS data, various aircraft flight patterns and maneuvers were implemented, including straight horizontal flights, circular flights, wing and nose wags over the ocean. Analysis of the first two campaigns in 2007 and 2008 leads us to improve the CAROLS radiometer regarding isolation between channels and filter bandwidth. After implementation of these improvements, results show that the instrument is conforming to specification and is a useful tool for Soil Moisture and Ocean Salinity (SMOS) satellite validation as well as for specific studies on surface soil moisture or ocean salinity.
International Journal of Remote Sensing | 2015
L. Jarlan; S. Khabba; S. Er-Raki; M. Le Page; Lahoucine Hanich; Y. Fakir; O. Merlin; S. Mangiarotti; Simon Gascoin; J. Ezzahar; M.H. Kharrou; Brahim Berjamy; A. Saaïdi; Abdelghani Boudhar; A. Benkaddour; N. Laftouhi; J. Abaoui; A. Tavernier; Gilles Boulet; V. Simonneaux; Fatima Driouech; M. El Adnani; A. El Fazziki; N. Amenzou; F. Raibi; A. El Mandour; H. Ibouh; V. Le Dantec; Florence Habets; Yves Tramblay
Monitoring of water resources and a better understanding of the eco-hydrological processes governing their dynamics are necessary to anticipate and develop measures to adapt to climate and water-use changes. Focusing on this aim, a research project carried out within the framework of French–Moroccan cooperation demonstrated how remote sensing can help improve the monitoring and modelling of water resources in semi-arid Mediterranean regions. The study area is the Tensift Basin located near Marrakech (Morocco) – a typical Southern Mediterranean catchment with water production in the mountains and downstream consumption mainly driven by agriculture. Following a description of the institutional context and the experimental network, the main recent research results are presented: (1) methodological development for the retrieval of key components of the water cycle in a snow-covered area from remote-sensing imagery (disaggregated soil moisture from soil moisture and ocean salinity) at the kilometre scale, based on the Moderate Resolution Imaging Spectroradiometer (MODIS); (2) the use of remote-sensing products together with land-surface modelling for the monitoring of evapotranspiration; and (3) phenomenological modelling based only on time series of remote-sensing data with application to forecasting of cereal yields. Finally, the issue of transfer of research results is also addressed through two remote sensing-based tools developed together with the project partners involved in water management and irrigation planning.
Remote Sensing | 2015
Azza Gorrab; Mehrez Zribi; Nicolas Baghdadi; Bernard Mougenot; Pascal Fanise; Zohra Lili Chabaane
The aim of this paper is to propose a methodology combing multi-temporal X-band SAR images (TerraSAR-X) with continuous ground thetaprobe measurements, for the retrieval of surface soil moisture and texture at a high spatial resolution. Our analysis is based on seven radar images acquired at a 36° incidence angle in the HH polarization, over a semi-arid site in Tunisia (North Africa). The soil moisture estimations are based on an empirical change detection approach using TerraSAR-X data and ground auxiliary thetaprobe network measurements. Two assumptions were tested: (1) roughness variations during the three-month radar acquisition campaigns were not accounted for; (2) a simple correction for temporal variations in roughness was included. The results reveal a small improvement in the estimation of soil moisture when a correction for temporal variations in roughness is introduced. By considering the estimated temporal dynamics of soil moisture, a methodology is proposed for the retrieval of clay and sand content (expressed as percentages) in soil. Two empirical relationships were established between the mean moisture values retrieved from the seven acquired radar images and the two soil texture components over 36 test fields. Validation of the proposed approach was carried out over a second set of 34 fields, showing that highly accurate clay estimations can be achieved. Maps of soil moisture, clay and sand percentages at the studied site are derived.
IEEE Transactions on Geoscience and Remote Sensing | 2011
Mickaël Pardé; Mehrez Zribi; Pascal Fanise; Monique Dechambre
In this paper, different methods are proposed for the detection and mitigation of the undesirable effects of radio-frequency interference (RFI) in microwave radiometry. The first of these makes use of kurtosis to detect the presence of non-Gaussian signals, whereas the second imposes a threshold on the standard deviation of brightness temperatures in order to distinguish natural-emission variations from RFI. Finally, the third approach is based on the use of a threshold applied to the third and fourth Stokes parameters. All these methods have been applied and tested, with the cooperative airborne radiometer for ocean and land studies radiometer operating in the L-band, on the data acquired during airborne campaigns made in the spring of 2009 over the southwest of France. The performance of each approach, or of two combined approaches, is analyzed with our database. We thus show that the kurtosis method is well suited to detect pulsed RFI, whereas the method based on the second moment of brightness temperatures seems to be better suited to detect continuous-wave RFI in airborne brightness-temperature measurements.
IEEE Transactions on Geoscience and Remote Sensing | 2012
Adrien Martin; Jacqueline Boutin; Danièle Hauser; Gilles Reverdin; Mickaël Pardé; Mehrez Zribi; Pascal Fanise; Jerome Chanut; Pascal Lazure; Joseph Tenerelli; Nicolas Reul
A renewal of interest for the radiometric L-band Sea Surface Salinity (SSS) remote sensing appeared in the 1990s and led to the Soil Moisture and Ocean Salinity (SMOS) satellite launched in November 2009 and to the Aquarius mission (launched in June 2011). However, due to low signal to noise ratio, retrieving SSS from L-band radiometry is very challenging. In order to validate and improve L-band radiative transfer model and salinity retrieval method used in SMOS data processing, the Cooperative Airborne Radiometer for Ocean and Land Studies (CAROLS) was developed. We analyze here a coastal flight (20 May 2009), in the Gulf of Biscay, characterized by strong SSS gradients (28 to 35 pss-78). Extensive in-situ measurements were gathered along the plane track. Brightness temperature (Tb) integrated over 800 ms correlates well with simulated Tb (correlation coefficients between 0.80 and 0.96; standard deviations of the difference of 0.2 K). Over the whole flight, the standard deviation of the difference between CAROLS and in-situ SSS is about 0.3 pss-78 more accurate than SSS fields derived from coastal numerical model or objective analysis. In the northern part of the flight, CAROLS and in-situ SSS agree. In the southern part, the best agreement is found when using only V-polarization measured at 30° incidence angle or when using a multiparameter retrieval assuming large error on Tb (suggesting the presence of biases on H-polarization). When compared to high-resolution model SSS, the CAROLS SSS underlines the high SSS temporal variability in river plume and on continental shelf border, and the importance of using realistic river run-offs for modeling coastal SSS.
Remote Sensing | 2015
Sameh Saadi; Vincent Simonneaux; Gilles Boulet; Bruno Raimbault; Bernard Mougenot; Pascal Fanise; Hassan Ayari; Zohra Lili-Chabaane
Water scarcity is one of the main factors limiting agricultural development in semi-arid areas. Remote sensing has long been used as an input for crop water balance monitoring. The increasing availability of high resolution high repetitivity remote sensing (forthcoming Sentinel-2 mission) offers an unprecedented opportunity to improve this monitoring. In this study, regional crop water consumption was estimated with the SAMIR software (SAtellite Monitoring of IRrigation) using the FAO-56 dual crop coefficient water balance model fed with high resolution NDVI image time series providing estimates of both the actual basal crop coefficient and the vegetation fraction cover. Three time series of SPOT5 images have been acquired over an irrigated area in central Tunisia along with a SPOT4 time series acquired in the frame of the SPOT4-Take5 experiment, which occurred during the first half of 2013. Using invariant objects located in the scene, normalization of the SPOT5 time series was realized based on the SPOT4-Take5 time series. Hence, a NDVI time profile was generated for each pixel. The operationality and accuracy of the SAMIR tool was assessed at both plot scale (calibration based on evapotranspiration ground measurements) and perimeter scale (irrigation volumes) when several land use types, irrigation and agricultural practices are intertwined in a given landscape. Results at plot scale gave after calibration an average Nash efficiency of 0.57 between observed and modeled evapotranspiration for two plots (barley and wheat). When aggregated for the whole season, modeled irrigation volumes at perimeter scale for all campaigns were close to observed ones (resp. 135 and 121 mm, overestimation of 11.5%). However, spatialized evapotranspiration and irrigation volumes need to be improved at finer timescales.
Sensors | 2011
Pascal Fanise; Mickaël Pardé; Mehrez Zribi; Monique Dechambre; Christophe Caudoux
A method based on the use of a spectral analyzer has been developed in order to identify and mitigate radio frequency interference (RFI) in microwave radiometry. This method has been tested with L-band CAROLS airborne data highly corrupted by interferences. RFI is a major limiting factor in passive microwave remote sensing. Although the 1.4–1.427 GHz bandwidth is protected, RFI sources close to these frequencies may still corrupt radiometer measurements. In order to reduce RFI bad effects on the brightness temperature measurements, a new instrument called spectral analyzer has been added to the CAROLS radiometer system. A post processing algorithm based on a selective filtering with the division of bandwidth in subbands is proposed. Two discriminant analysis based on the computation of kurtosis and Mahalanobis distance have been compared, evaluated and validated in order to separate accurately the RF interference with natural signal.
2008 Microwave Radiometry and Remote Sensing of the Environment | 2008
Mehrez Zribi; Danièle Hauser; Mickaël Pardé; Pascal Fanise; Paul Leroy; Monique Dechambre; Jacqueline Boutin; Gilles Reverdin; Jean-Christophe Calvet; Alain Weill; Jean-Pierre Wigneron; Niels Skou; Sten Schmidl Søbjærg; A. Ruis; E. Cadareche
The CAROLS, L band radiometer, is built and designed as a copy of EMIRAD II radiometer of DTU team. It is a Correlation radiometer with direct sampling and fully polarimetric (i.e 4 Stockes). It will be used in conjunction with other airborne instruments (in particular the C-Band scatterometer (STORM) and IEEC GPS system, Infrared CIMEL radiometer, one visible camera), in coordination with in situ field campaigns for SMOS CAL/VAL. The instruments are implemented on board the French research airplane ATR42. A validation campaign with four flights was made over south west of France, Hourtin Lake and Bay of Biscay (Atlantic Ocean) in September 2007. In order to qualify the radiometer data, different types of aircraft movements were realized: circle flights, wing and nose wags. Simultaneously to flights, different ground measurements were made over continental surfaces and ocean. First results show a good quality of data over ocean surfaces. For continental surfaces, important Radio-Frequency Interferences (RFI) were observed over a large part of the studied region.
2010 11th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment | 2010
Mickaël Pardé; Mehrez Zribi; Pascal Fanise; Monique Dechambre; Jacqueline Boutin; Nicolas Reul; Joseph Tenerelli; Danièle Hauser; Yann Kerr
In the present paper, different methods are proposed for the detection and mitigation of the undesirable effects of radio frequency interference (RFI) in microwave radiometry. The first of these makes use of kurtosis to detect the presence of non-Gaussian signals, whereas the second imposes a threshold on the standard deviation of brightness temperatures, in order to distinguish natural emission variations from RFI. Finally, the third approach is based on the use of a threshold applied to the third and fourth Stokes parameters. All of these methods have been applied and tested, with a CAROLS radiometer operating in the L-band, on data acquired during airborne campaigns made in spring 2009 over the South West of France. The performance of each, or of two combined approaches is analyzed with our database. We thus show that the kurtosis method is well adapted to pulsed RFI, whereas the method based on the second moment is well adapted to continuous-wave RFI.