Pascal J. Elahi
University of Western Australia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pascal J. Elahi.
Monthly Notices of the Royal Astronomical Society | 2012
Julian Onions; Alexander Knebe; Frazer R. Pearce; Stuart I. Muldrew; Hanni Lux; Steffen R. Knollmann; Y. Ascasibar; Peter Behroozi; Pascal J. Elahi; Jiaxin Han; Michal Maciejewski; Manuel E. Merchan; Andrés N. Ruiz; Mario Agustín Sgró; Volker Springel; Dylan Tweed
We present a detailed comparison of the substructure properties of a single Milky Way sized dark matter halo from the Aquarius suite at five different resolutions, as identified by a variety of different (sub)halo finders for simulations of cosmic structure formation. These finders span a wide range of techniques and methodologies to extract and quantify substructures within a larger non-homogeneous background density (e.g. a host halo). This includes real-space-, phase-space-, velocity-space- and time-space-based finders, as well as finders employing a Voronoi tessellation, Friends-of-Friends techniques or refined meshes as the starting point for locating substructure. A common post-processing pipeline was used to uniformly analyse the particle lists provided by each finder. We extract quantitative and comparable measures for the subhaloes, primarily focusing on mass and the peak of the rotation curve for this particular study. We find that all of the finders agree extremely well in the presence and location of substructure and even for properties relating to the inner part of the subhalo (e.g. the maximum value of the rotation curve). For properties that rely on particles near the outer edge of the subhalo the agreement is at around the 20 per cent level. We find that the basic properties (mass and maximum circular velocity) of a subhalo can be reliably recovered if the subhalo contains more than 100 particles although its presence can be reliably inferred for a lower particle number limit of 20. We finally note that the logarithmic slope of the subhalo cumulative number count is remarkably consistent and <1 for all the finders that reached high resolution. If correct, this would indicate that the larger and more massive, respectively, substructures are the most dynamically interesting and that higher levels of the (sub)subhalo hierarchy become progressively less important.
The Astrophysical Journal | 2014
Rodrigo A. Ibata; Neil G. Ibata; Geraint F. Lewis; Nicolas F. Martin; Anthony R. Conn; Pascal J. Elahi; Veronica Arias; Nuwanthika Fernando
In a recent contribution, Bahl & Baumgardt investigated the incidence of planar alignments of satellite galaxies in the Millennium-II simulation and concluded that vast, thin planes of dwarf galaxies, similar to that observed in the Andromeda galaxy (M31), occur frequently by chance in ?-cold dark matter cosmology. However, their analysis did not capture the essential fact that the observed alignment is simultaneously radially extended, yet thin, and kinematically unusual. With the caveat that the Millennium-II simulation may not have sufficient mass resolution to identify confidently simulacra of low-luminosity dwarf galaxies, we re-examine that simulation for planar structures, using the same method as employed by Ibata et?al. on the real M31 satellites. We find that 0.04% of host galaxies display satellite alignments that are at least as extreme as the observations, when we consider their extent, thickness, and number of members rotating in the same sense. We further investigate the angular momentum properties of the co-planar satellites, and find that the median of the specific angular momentum derived from the line-of-sight velocities in the real M31 structure (1.3 ? 104 km s?1 kpc) is very high compared to systems drawn from the simulations. This analysis confirms that it is highly unlikely that the observed structure around the Andromeda galaxy is due to a chance occurrence. Interestingly, the few extreme systems that are similar to M31 arise from the accretion of a massive sub-halo with its own spatially concentrated entourage of orphan satellites.
Monthly Notices of the Royal Astronomical Society | 2013
Chaichalit Srisawat; Alexander Knebe; Frazer R. Pearce; Aurel Schneider; Peter A. Thomas; Peter Behroozi; K. Dolag; Pascal J. Elahi; Jiaxin Han; John C. Helly; Yipeng Jing; Intae Jung; Jaehyun Lee; Yao Yuan Mao; Julian Onions; Vicente Rodriguez-Gomez; Dylan Tweed; Sukyoung K. Yi
Merger trees follow the growth and merger of dark-matter haloes over cosmic history. As well as giving important insights into the growth of cosmic structure in their own right, they provide an essential backbone to semi-analytic models of galaxy formation. This paper is the first in a series to arise from the Sussing Merger Trees Workshop in which 10 different tree-building algorithms were applied to the same set of halo catalogues and their results compared. Although many of these codes were similar in nature, all algorithms produced distinct results. Our main conclusions are that a useful merger-tree code should possess the following features: (i) the use of particle IDs to match haloes between snapshots; (ii) the ability to skip at least one, and preferably more, snapshots in order to recover subhaloes that are temporarily lost during merging; (iii) the ability to cope with (and ideally smooth out) large, temporary fluctuations in halo mass. Finally, to enable different groups to communicate effectively, we defined a common terminology that we used when discussing merger trees and we encourage others to adopt the same language. We also specified a minimal output format to record the results.
Monthly Notices of the Royal Astronomical Society | 2016
Federico Sembolini; Gustavo Yepes; Frazer R. Pearce; Alexander Knebe; Scott T. Kay; Chris Power; Weiguang Cui; Alexander M. Beck; Stefano Borgani; Claudio Dalla Vecchia; Romeel Davé; Pascal J. Elahi; Sean February; Shuiyao Huang; Alex Hobbs; Neal Katz; Erwin T. Lau; Ian G. McCarthy; Guiseppe Murante; Daisuke Nagai; Kaylea Nelson; Richard D. A. Newton; Valentin Perret; Ewald Puchwein; Justin I. Read; A. Saro; Joop Schaye; Romain Teyssier; Robert J. Thacker
We have simulated the formation of a galaxy cluster in a Ʌ cold dark matter universe using 13 different codes modelling only gravity and non-radiative hydrodynamics (RAMSES, ART, AREPO, HYDRA and nine incarnations of GADGET). This range of codes includes particle-based, moving and fixed mesh codes as well as both Eulerian and Lagrangian fluid schemes. The various GADGET implementations span classic and modern smoothed particle hydrodynamics (SPH) schemes. The goal of this comparison is to assess the reliability of cosmological hydrodynamical simulations of clusters in the simplest astrophysically relevant case, that in which the gas is assumed to be non-radiative. We compare images of the cluster at z = 0, global properties such as mass and radial profiles of various dynamical and thermodynamical quantities. The underlying gravitational framework can be aligned very accurately for all the codes allowing a detailed investigation of the differences that develop due to the various gas physics implementations employed. As expected, the mesh-based codes RAMSES, ART and AREPO form extended entropy cores in the gas with rising central gas temperatures. Those codes employing classic SPH schemes show falling entropy profiles all the way into the very centre with correspondingly rising density profiles and central temperature inversions. We show that methods with modern SPH schemes that allow entropy mixing span the range between these two extremes and the latest SPH variants produce gas entropy profiles that are essentially indistinguishable from those obtained with grid-based methods.
Monthly Notices of the Royal Astronomical Society | 2013
Julian Onions; Y. Ascasibar; Peter Behroozi; Javier Casado; Pascal J. Elahi; Jiaxin Han; Alexander Knebe; Hanni Lux; Manuel E. Merchan; Stuart I. Muldrew; Lyndsay Old; Frazer R. Pearce; Doug Potter; Andrés N. Ruiz; Mario Agustín Sgró; Dylan Tweed; Thomas Yue
We present a study of a comparison of spin distributions of subhaloes found associated with a host halo. The subhaloes are found within two cosmological simulation families of Milky Way-like galaxies, namely the Aquarius and GHALO simulations. These two simulations use different gravity codes and cosmologies. We employ 10 different substructure finders, which span a wide range of methodologies from simple overdensity in configuration space to full 6D phase space analysis of particles. We subject the results to a common post-processing pipeline to analyse the results in a consistent manner, recovering the dimensionless spin parameter. We find that spin distribution is an excellent indicator of how well the removal of background particles (unbinding) has been carried out. We also find that the spin distribution decreases for substructures the nearer they are to the host haloes, and that the value of the spin parameter rises with enclosed mass towards the edge of the substructure. Finally, subhaloes are less rotationally supported than field haloes, with the peak of the spin distribution having a lower spin parameter.
Monthly Notices of the Royal Astronomical Society | 2015
Peter Behroozi; Alexander Knebe; Frazer R. Pearce; Pascal J. Elahi; Jiaxin Han; Hanni Lux; Yao-Yuan Mao; Stuart I. Muldrew; Doug Potter; Chaichalit Srisawat
Merging haloes with similar masses (i.e. major mergers) pose significant challenges for halo finders. We compare five halo-finding algorithms’ (ahf, hbt, rockstar, subfind, and velociraptor) recovery of halo properties for both isolated and cosmological major mergers. We find that halo positions and velocities are often robust, but mass biases exist for every technique. The algorithms also show strong disagreement in the prevalence and duration of major mergers, especially at high redshifts (z > 1). This raises significant uncertainties for theoretical models that require major mergers for, e.g. galaxy morphology changes, size changes, or black hole growth, as well as for finding Bullet Cluster analogues. All finders not using temporal information also show host halo and subhalo relationship swaps over successive timesteps, requiring careful merger tree construction to avoid problematic mass accretion histories. We suggest that future algorithms should combine phase-space and temporal information to avoid the issues presented.
Monthly Notices of the Royal Astronomical Society | 2014
Santiago Avila; Alexander Knebe; Frazer R. Pearce; Aurel Schneider; Chaichalit Srisawat; Peter A. Thomas; Peter Behroozi; Pascal J. Elahi; Jiaxin Han; Yao Yuan Mao; Julian Onions; Vicente Rodriguez-Gomez; Dylan Tweed
Merger tree codes are routinely used to follow the growth and merger of dark matter haloes in simulations of cosmic structure formation. Whereas in Srisawat et. al. we compared the trees built using a wide variety of such codes, here we study the influence of the underlying halo catalogue upon the resulting trees. We observe that the specifics of halo finding itself greatly influences the constructed merger trees. We find that the choices made to define the halo mass are of prime importance. For instance, amongst many potential options different finders select self-bound objects or spherical regions of defined overdensity, decide whether or not to include substructures within the mass returned and vary in their initial particle selection. The impact of these decisions is seen in tree length (the period of time a particularly halo can be traced back through the simulation), branching ratio (essentially the merger rate of subhaloes) and mass evolution. We therefore conclude that the choice of the underlying halo finder is more relevant to the process of building merger trees than the tree builder itself. We also report on some built-in features of specific merger tree codes that (sometimes) help to improve the quality of the merger trees produced.
The Astrophysical Journal | 2017
Jesse van de Sande; Joss Bland-Hawthorn; L. M. R. Fogarty; Luca Cortese; Francesco D’Eugenio; Scott M. Croom; Nicholas Scott; James T. Allen; Sarah Brough; Julia J. Bryant; Gerald Cecil; Matthew Colless; Warrick J. Couch; Roger L. Davies; Pascal J. Elahi; Caroline Foster; Gregory Goldstein; Michael Goodwin; Brent Groves; I-Ting Ho; Hyunjin Jeong; D. Heath Jones; I. S. Konstantopoulos; Jon Lawrence; Sarah K. Leslie; A. R. Lopez-Sanchez; Richard M. McDermid; R. McElroy; Anne M. Medling; Sree Oh
Recent cosmological hydrodynamical simulations suggest that integral field spectroscopy can connect the high-order stellar kinematic moments h_3 (~skewness) and h_4 (~kurtosis) in galaxies to their cosmological assembly history. Here, we assess these results by measuring the stellar kinematics on a sample of 315 galaxies, without a morphological selection, using two-dimensional integral field data from the SAMI Galaxy Survey. Proxies for the spin parameter (λ_(R_e)) and ellipticity (e_e) are used to separate fast and slow rotators; there exists a good correspondence to regular and non-regular rotators, respectively, as also seen in earlier studies. We confirm that regular rotators show a strong h_3 versus V/σ anti-correlation, whereas quasi-regular and non-regular rotators show a more vertical relation in h_3 and V/σ. Motivated by recent cosmological simulations, we develop an alternative approach to kinematically classify galaxies from their individual h_3 versus V/σ signatures. Within the SAMI Galaxy Survey, we identify five classes of high-order stellar kinematic signatures using Gaussian mixture models. Class 1 corresponds to slow rotators, whereas Classes 2–5 correspond to fast rotators. We find that galaxies with similar λ_(R_e) - e_e values can show distinctly different h_3 - V/σ signatures. Class 5 objects are previously unidentified fast rotators that show a weak h_3 versus V/σ anti-correlation. From simulations, these objects are predicted to be disk-less galaxies formed by gas-poor mergers. From morphological examination, however, there is evidence for large stellar disks. Instead, Class 5 objects are more likely disturbed galaxies, have counter-rotating bulges, or bars in edge-on galaxies. Finally, we interpret the strong anti-correlation in h_3 versus V/σ as evidence for disks in most fast rotators, suggesting a dearth of gas-poor mergers among fast rotators.
Monthly Notices of the Royal Astronomical Society | 2013
Alexander Knebe; Noam I. Libeskind; Frazer R. Pearce; Peter Behroozi; Javier Casado; K. Dolag; Rosa Dominguez-Tenreiro; Pascal J. Elahi; Hanni Lux; Stuart I. Muldrew; Julian Onions
With the ever-increasing size and complexity of fully self-consistent simulations of galaxy formation within the framework of the cosmic web, the demands upon object finders for these simulations have simultaneously grown. To this extent we initiated the Halo-Finder Comparison Project that gathered together all the experts in the field and has so far led to two comparison papers, one for dark matter field haloes, and one for dark matter subhaloes. However, as state-of-the-art simulation codes are perfectly capable of not only following the formation and evolution of dark matter but also accounting for baryonic physics, i.e. gas hydrodynamics, star formation, stellar feedback, etc., object finders should also be capable of taking these additional physical processes into consideration. Here we report - for the first time - on a comparison of codes as applied to the Constrained Local UniversE Simulation (CLUES) of the formation of the Local Group which incorporates much of the physics relevant for galaxy formation. We compare both the properties of the three main galaxies in the simulation (representing the Milky Way, Andromeda and M33) and their satellite populations for a variety of halo finders ranging from phase space to velocity space to spherical overdensity based codes, including also a mere baryonic object finder. We obtain agreement amongst codes comparable to (if not better than) our previous comparisons - at least for the total, dark and stellar components of the objects. However, the diffuse gas content of the haloes shows great disparity, especially for low-mass satellite galaxies. This is primarily due to differences in the treatment of the thermal energy during the unbinding procedure. We acknowledge that the handling of gas in halo finders is something that needs to be dealt with carefully, and the precise treatment may depend sensitively upon the scientific problem being studied.
Monthly Notices of the Royal Astronomical Society | 2013
Pascal J. Elahi; Jiaxin Han; Hanni Lux; Y. Ascasibar; Peter Behroozi; Alexander Knebe; Stuart I. Muldrew; Julian Onions; Frazer R. Pearce
While various codes exist to systematically and robustly find haloes and subhaloes in cosmological simulations, this is the first work to introduce and rigorously test codes that find tidal debris (streams and other unbound substructure) in fully cosmological simulations of structure formation. We use one tracking and three non-tracking codes to identify substructure (bound and unbound) in a Milky Way type simulation from the Aquarius suite and post-process their output with a common pipeline to determine the properties of these substructures in a uniform way. By using output from a fully cosmological simulation, we also take a step beyond previous studies of tidal debris that have used simple toy models. We find that both tracking and non-tracking codes agree well on the identification of subhaloes and more importantly, the unbound tidal features associated with them. The distributions of basic properties of the total substructure distribution (mass, velocity dispersion, position) are recovered with a scatter of similar to 20 per cent. Using the tracking code as our reference, we show that the non-tracking codes identify complex tidal debris with purities of similar to 40 per cent. Analysing the results of the substructure finders, we find that the general distribution of substructures differ significantly from the distribution of bound subhaloes. Most importantly, both bound and unbound substructures together constitute similar to 18 per cent of the host halo mass, which is a factor of similar to 2 higher than the fraction in self-bound subhaloes. However, this result is restricted by the remaining challenge to cleanly define when an unbound structure has become part of the host halo. Nevertheless, the more general substructure distribution provides a more complete picture of a halos accretion history.