Pascal Mercier
University of Alberta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pascal Mercier.
Molecular Cell | 2003
Roisean E. Ferguson; Yin-Biao Sun; Pascal Mercier; Andrew S. Brack; Brian D. Sykes; John E. T. Corrie; David R. Trentham; Malcolm Irving
A recently developed approach for mapping protein-domain orientations in the cellular environment was used to investigate the Ca(2+)-dependent structural changes in the tropomyosin/troponin complex on the actin filament that regulate muscle contraction. Polarized fluorescence from bifunctional rhodamine probes attached along four alpha helices of troponin C (TnC) was measured in permeabilized skeletal muscle fibers. In relaxed muscle, the N-terminal lobe of TnC is less closed than in crystal structures of the Ca(2+)-free domain, and its D helix is approximately perpendicular to the actin filament. In contrast to crystal structures of isolated TnC, the D and E helices are not collinear. On muscle activation, the N lobe orientation becomes more disordered and the average angle between the C helix and the filament changes by 32 degrees +/- 5 degrees. These results illustrate the potential of in situ measurements of helix and domain orientations for elucidating structure-function relations in native macromolecular complexes.
British Journal of Cancer | 2016
Angela W Chan; Pascal Mercier; Daniel Schiller; Robert J Bailey; Sarah Robbins; Dean T. Eurich; Michael B. Sawyer; David Broadhurst
Background:Metabolomics has shown promise in gastric cancer (GC) detection. This research sought to identify whether GC has a unique urinary metabolomic profile compared with benign gastric disease (BN) and healthy (HE) patients.Methods:Urine from 43 GC, 40 BN, and 40 matched HE patients was analysed using 1H nuclear magnetic resonance (1H-NMR) spectroscopy, generating 77 reproducible metabolites (QC-RSD <25%). Univariate and multivariate (MVA) statistics were employed. A parsimonious biomarker profile of GC vs HE was investigated using LASSO regularised logistic regression (LASSO-LR). Model performance was assessed using Receiver Operating Characteristic (ROC) curves.Results:GC displayed a clear discriminatory biomarker profile; the BN profile overlapped with GC and HE. LASSO-LR identified three discriminatory metabolites: 2-hydroxyisobutyrate, 3-indoxylsulfate, and alanine, which produced a discriminatory model with an area under the ROC of 0.95.Conclusions:GC patients have a distinct urinary metabolite profile. This study shows clinical potential for metabolic profiling for early GC diagnosis.
Biochemistry | 2008
Olga K. Baryshnikova; Ian M. Robertson; Pascal Mercier; Brian D. Sykes
NMR spectroscopy has been employed to elucidate the molecular consequences of the DCM G159D mutation on the structure and dynamics of troponin C, and its interaction with troponin I (TnI). Since the molecular effects of human mutations are often subtle, all NMR experiments were conducted as direct side-by-side comparisons of the wild-type C-domain of troponin C (cCTnC) and the mutant protein, G159D. With the mutation, the affinity toward the anchoring region of cTnI (cTnI 34-71) was reduced ( K D = 3.0 +/- 0.6 microM) compared to that of the wild type ( K D < 1 microM). Overall, the structure and dynamics of the G159D.cTnI 34-71 complex were very similar to those of the cCTnC.cTnI 34-71 complex. There were, however, significant changes in the (1)H, (13)C, and (15)N NMR chemical shifts, especially for the residues in direct contact with cTnI 34-71, and the changes in NOE connectivity patterns between the G159D.cTnI 34-71 and cCTnC.cTnI 34-71 complexes. Thus, the most parsimonious hypothesis is that the development of disease results from the poor anchoring of cTnI to cCTnC, with the resulting increase in the level of acto-myosin inhibition in agreement with physiological data. Another possibility is that long-range electrostatic interactions affect the binding of the inhibitory and switch regions of cTnI (cTnI 128-147 and cTnI 147-163) and/or the cardiac specific N-terminus of cTnI (cTnI 1-29) to the N-domain of cTnC. These important interactions are all spatially close in the X-ray structure of the cardiac TnC core.
Protein Science | 2007
Pascal Mercier; Michael J. Lewis; D. Duong Hau; Linda F. Saltibus; Wei Xiao; Leo Spyracopoulos
A key step in the signaling cascade responsible for activation of the transcription factor NF‐κB involves Lys63‐linked polyubiquitination of TRAF6. Covalent attachment of ubiquitin (Ub) to TRAF6, and subsequent poly(Ub) chain synthesis, is catalyzed by the hUev1a–hUbc13 heterodimer. hUbc13 is a catalytically competent E2 enzyme, and hUev1a is an E2‐like protein that binds substrate Ub. The hUev1a–hUbc13 heterodimer is targeted to TRAF6 through interactions between hUbc13 and the N‐terminal RING domain from TRAF6. Nuclear magnetic resonance (NMR) spectroscopy was used to determine the solution state structure of the RING domain from human TRAF6, and the interaction between hUbc13 and TRAF6 was characterized using NMR chemical shift mapping. The main‐chain dynamics of the RING domain from TRAF6 were studied using 15N NMR relaxation. Analysis of the main‐chain dynamics data indicates that residues within the α‐helix and β‐sheet of the RING domain are as rigid as regions of canonical secondary structure in larger proteins, consistent with the biological role of RING‐domain E3 proteins, which requires that the E3 contain a recognition site for recruitment of E2 ubiquitin conjugation enzymes.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Stephen A. Cochrane; Brandon Findlay; Alireza Bakhtiary; Jeella Z. Acedo; Eva M. Rodriguez-Lopez; Pascal Mercier; John C. Vederas
Significance The increasing development of antimicrobial resistance is a major global concern, and there is an urgent need for the development of new antibiotics. We show that the antimicrobial lipopeptide tridecaptin A1 selectively binds to the Gram-negative analogue of peptidoglycan precursor lipid II, disrupting the proton motive force and killing Gram-negative bacteria. We present an example of the selective targeting of Gram-negative lipid II and a binding mode to this peptidoglycan precursor. No persistent resistance develops against tridecaptin A1 in Escherichia coli cells exposed to subinhibitory concentrations of this peptide during a 1-mo period. This study showcases the excellent antibiotic properties of the tridecaptins in an age where new antibiotics that target Gram-negative bacteria are desperately needed. Tridecaptin A1 (TriA1) is a nonribosomal lipopeptide with selective antimicrobial activity against Gram-negative bacteria. Here we show that TriA1 exerts its bactericidal effect by binding to the bacterial cell-wall precursor lipid II on the inner membrane, disrupting the proton motive force. Biochemical and biophysical assays show that binding to the Gram-negative variant of lipid II is required for membrane disruption and that only the proton gradient is dispersed. The NMR solution structure of TriA1 in dodecylphosphocholine micelles with lipid II has been determined, and molecular modeling was used to provide a structural model of the TriA1–lipid II complex. These results suggest that TriA1 kills Gram-negative bacteria by a mechanism of action using a lipid-II–binding motif.
Protein Science | 2005
Xu Wang; Pascal Mercier; Paul Jean Letourneau; Brian D. Sykes
19F NMR spectroscopy is potentially a powerful tool for probing protein properties in situ. However, results obtained using this technique are relevant only if the 19F probe offers minimal perturbation to the surrounding environment. In this paper, we examine the effect of 5‐fluorotryptophan (5fW) incorporation on the three‐dimensional structure of cardiac troponin‐C (cTnC), with the intention of developing a 19F‐labeled TnC for use in in situ 19FNMR. We find that, in general, 5fW does not perturb the structure of the protein significantly. Replacement of residue Phe 153 with 5fW produces no noticeable change in protein conformation. However, replacement of residue Phe 104 with 5fW produces a folding behavior that is dependent on the Escherichia coli strain used to express the mutant. The orientations of the indole rings in these mutants are such that the Trp residue adopts a χ2 of ∼90° in the F104W mutant and ∼−100° in the F153W mutant. Using results from 19F‐1H heteronuclear NOE experiment, we show the replacement of L‐Trp with 5fW at these positions does not change the orientation of the indole ring and the spread of the 5fW side‐chain dihedral angles increases moderately for the F104(5fW) mutant and not at all for the F153(5fW) mutant. Based on these structures, we conclude that the substitution of Phe by 5fW at these two positions has minimal effects on the structure of cTnC and that the 5fW indole rings in both mutants have well defined orientation, making the two mutants viable candidates for use in in situ 19F NMR spectroscopy.
Proteins | 2011
Olivier Julien; Pascal Mercier; Claire N. Allen; Olivier Fisette; Carlos H.I. Ramos; Patrick Lagüe; Tharin M. A. Blumenschein; Brian D. Sykes
In striated muscle, the binding of calcium to troponin C (TnC) results in the removal of the C‐terminal region of the inhibitory protein troponin I (TnI) from actin. While structural studies of the muscle system have been successful in determining the overall organization of most of the components involved in force generation at the atomic level, the structure and dynamics of the C‐terminal region of TnI remains controversial. This domain of TnI is highly flexible, and it has been proposed that this intrinsically disordered region (IDR) regulates contraction via a “fly‐casting” mechanism. Different structures have been presented for this region using different methodologies: a single α‐helix, a “mobile domain” containing a small β‐sheet, an unstructured region, and a two helix segment. To investigate whether this IDR has in fact any nascent structure, we have constructed a skeletal TnC‐TnI chimera that contains the N‐domain of TnC (1–90), a short linker (GGAGG), and the C‐terminal region of TnI (97–182) and have acquired 15N NMR relaxation data for this chimera. We compare the experimental relaxation parameters with those calculated from molecular dynamic simulations using four models based upon the structural studies. Our experimental results suggest that the C‐terminal region of TnI does not contain any defined secondary structure, supporting the “fly‐casting” mechanism. We interpret the presence of a “plateau” in the 15N NMR relaxation data as being an intrinsic property of IDRs. We also identified a more rigid adjacent region of TnI that has implications for muscle performance under ischemic conditions. Proteins 2011.
Biochemistry | 2013
Jane J. Bai; Susan S. Safadi; Pascal Mercier; Kathryn R. Barber; Gary S. Shaw
The ubiquitin signaling pathway consists of hundreds of enzymes that are tightly regulated for the maintenance of cell homeostasis. Parkin is an E3 ubiquitin ligase responsible for conjugating ubiquitin onto a substrate protein, which itself can be ubiquitinated. Ataxin-3 performs the opposing function as a deubiquitinating enzyme that can remove ubiquitin from parkin. In this work, we have identified the mechanism of interaction between the ubiquitin-like (Ubl) domain from parkin and three C-terminal ubiquitin-interacting motifs (UIMs) in ataxin-3. 1H–15N heteronuclear single-quantum coherence titration experiments revealed that there are weak direct interactions between all three individual UIM regions of ataxin-3 and the Ubl domain. Each UIM utilizes the exposed β-grasp surface of the Ubl domain centered around the I44 patch that did not vary in the residues involved or the surface size as a function of the number of ataxin-3 UIMs involved. Further, the apparent dissociation constant for ataxin-3 decreased as a function of the number of UIM regions used in experiments. A global multisite fit of the nuclear magnetic resonance titration data, based on three identical binding ligands, resulted in a KD of 669 ± 62 μM for each site. Our observations support a multivalent ligand binding mechanism employed by the parkin Ubl domain to recruit multiple UIM regions in ataxin-3 and provide insight into how these two proteins function together in ubiquitination–deubiquitination pathways.
Protein Science | 2009
Olivier Julien; Pascal Mercier; Melissa L. Crane; Brian D. Sykes
The unique biophysical properties of tryptophan residues have been exploited for decades to monitor protein structure and dynamics using a variety of spectroscopic techniques, such as fluorescence and nuclear magnetic resonance (NMR). We recently designed a tryptophan mutant in the regulatory N‐domain of cardiac troponin C (F77W‐cNTnC) to study the domain orientation of troponin C in muscle fibers using solid‐state NMR. In our previous study, we determined the NMR structure of calcium‐saturated mutant F77W‐V82A‐cNTnC in the presence of 19% 2,2,2‐trifluoroethanol (TFE). TFE is a widely used cosolvent in the biophysical characterization of the solution structures of peptides and proteins. It is generally assumed that the structures are unchanged in the presence of cosolvents at relatively low concentrations, and this has been verified for TFE at the level of the overall secondary and tertiary structure for several calcium regulatory proteins. Here, we present the NMR solution structure of the calcium saturated F77W‐cNTnC in presence of its biological binding partner troponin I peptide (cTnI144–163) and in the absence of TFE. We have also characterized a panel of six F77W‐cNTnC structures in the presence and absence TFE, cTnI144–163, and the extra mutation V82A, and used 19F NMR to characterize the effect of TFE on the F77(5fW) analog. Our results show that although TFE did not perturb the overall protein structure, TFE did induce a change in the orientation of the indole ring of the buried tryptophan side chain from the anticipated position based upon homology with other proteins, highlighting the potential dangers of the use of cosolvents.
Journal of the American Chemical Society | 2008
Olivier Julien; Pascal Mercier; Leo Spyracopoulos; John E. T. Corrie; Brian D. Sykes
Fluorescence polarization measurements of bifunctional rhodamine (BR) probes provide a powerful approach to determine the in situ orientation of proteins within ordered complexes such as muscle fibers. For accurate interpretation of fluorescence measurements, it is important to understand the probe dynamics relative to the protein to which it is attached. We previously determined the structure of the N-domain of chicken skeletal troponin C, BR-labeled on the C helix, in complex with the switch region of troponin I, and demonstrated that the probe does not perturb the structure or dynamics of the protein. In this study, the motion of the fluorescence label relative to the protein has been characterized using NMR relaxation measurements of 13C-labeled methyl groups on the BR probe and 15N-labeled backbone amides of the protein. Probe dynamics were monitored using off-resonance 13C-R(1rho), 13C-R(1) and {1H}-13C NOE at magnetic field strengths of 500, 600, and 800 MHz. Relaxation data were interpreted in terms of the overall rotational correlation time of the protein and a two-time scale model for internal motion of the BR methyl groups, using a numerical optimization with Monte Carlo parameter error estimation. The analysis yields a 1.5 +/- 0.4 ps correlation time for rotation around the three-fold methyl symmetry axis, and a 0.8 +/- 0.4 ns rotational correlation time for reorientation of the 13C-14N bond with an associated S2s of 0.79 +/- 0.03. Order parameters of the backbone NH vectors in the helix to which the probe is attached average S2 approximately 0.85, implying that the amplitude of independent reorientation of the BR probe is small in magnitude, consistent with results from fluorescence polarization measurements in reconstituted muscle fibers.