Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pascal Mertens is active.

Publication


Featured researches published by Pascal Mertens.


Cellular Microbiology | 2001

Identification of Brucella spp. genes involved in intracellular trafficking.

Rose-May Delrue; María José Martínez‐Lorenzo; Pascal Lestrate; Isabelle Danese; V. Bielarz; Pascal Mertens; X. De Bolle; Anne Tibor; Jean Pierre Gorvel; Jean-Jacques Letesson

After uptake by host cells, the pathogen Brucella transits through early endosomes, evades phago–lysosome fusion and replicates in a compartment associated with the endoplasmic reticulum (ER). The molecular mechanisms underlying these processes are still poorly understood. To identify new bacterial factors involved in these processes, a library of 1800 Brucella melitensis 16M mini‐Tn5catkm mutants was screened for intracellular survival and multiplication in HeLa cells and J774A.1 macrophages. Thirteen mutants were identified as defective for their intracellular survival in both cell types. In 12 of them, the transposon had inserted in the virB operon, which encodes a type IV‐related secretion system. The preponderance of virB mutants demonstrates the importance of this secretion apparatus in the intracellular multiplication of B. melitensis. We also examined the intracellular fate of three virB mutants (virB2, virB4 and virB9) in HeLa cells by immunofluorescence. The three VirB proteins are not necessary for penetration and the inhibition of phago–lysosomal fusion within non‐professional phagocytes. Rather, the virB mutants are unable to reach the replicative niche and reside in a membrane‐bound vacuole expressing the late endosomal marker, LAMP1, and the sec61β protein from the ER membrane, proteins that are present in autophagic vesicles originating from the ER.


Molecular Microbiology | 2000

Identification and characterization of in vivo attenuated mutants of Brucella melitensis

Pascal Lestrate; Rose-May Delrue; Isabelle Danese; Christian Didembourg; B. Taminiau; Pascal Mertens; X. De Bolle; Anne Tibor; Christoph M. Tang; Jean-Jacques Letesson

Brucella melitensis 16M is a Gram‐negative α2‐proteobacterium responsible for abortion in goats and for Malta fever in humans. This facultative intracellular pathogen invades into and survives within both professional and non‐professional phagocytes. Signature‐tagged mutagenesis (STM) was used to identify genes required for the in vivo pathogenesis of Brucella. A library of transposon mutants was screened in a murine infection model. Out of 672 mutants screened, 20 were not recovered after a 5 day passage in BALB/c mice. The attenuation of 18 mutants was confirmed using an in vivo competition assay against the wild‐type strain. The 18 mutants were characterized further for their ability to replicate in murine macrophages and in HeLa cells. The sequences disrupted by the transposon in the mutants have homology to genes coding for proteins of different functional classes: transport, amino acid and DNA metabolism, transcriptional regulation, peptidoglycan synthesis, a chaperone‐like protein and proteins of unknown function. The mutants selected in this study provide new insights into the molecular basis of Brucella virulence.


Infection and Immunity | 2001

Protection of BALB/c Mice against Brucella abortus 544 Challenge by Vaccination with Bacterioferritin or P39 Recombinant Proteins with CpG Oligodeoxynucleotides as Adjuvant

Ayman Al-Mariri; Anne Tibor; Pascal Mertens; Xavier De Bolle; Patrick Michel; Jacques Godefroid; Karl Walravens; Jean-Jacques Letesson

ABSTRACT The P39 and the bacterioferrin (BFR) antigens of Brucella melitensis 16M were previously identified as T dominant antigens able to induce both delayed-type hypersensivity in sensitized guinea pigs and in vitro gamma interferon (IFN-γ) production by peripheral blood mononuclear cells from infected cattle. Here, we analyzed the potential for these antigens to function as a subunitary vaccine against Brucella abortus infection in BALB/c mice, and we characterized the humoral and cellular immune responses induced. Mice were injected with each of the recombinant proteins alone or adjuvanted with either CpG oligodeoxynucleotides (CpG ODN) or non-CpG ODN. Mice immunized with the recombinant antigens with CpG ODN were the only group demonstrating both significant IFN-γ production and T-cell proliferation in response to either Brucella extract or to the respective antigen. The same conclusion holds true for the antibody response, which was only demonstrated in mice immunized with recombinant antigens mixed with CpG ODN. The antibody titers (both immunoglobulin G1 [IgG1] and IgG2a) induced by P39 immunization were higher than the titers induced by BFR (only IgG2a). Using a B. abortus 544 challenge, the level of protection was analyzed and compared to the protection conferred by one immunization with the vaccine strain B19. Immunization with P39 and CpG ODN gave a level of protection comparable to the one conferred by B19 at 4 weeks postchallenge, and the mice were still significantly protected at 8 weeks postchallenge, although to a lesser extent than the B19-vaccinated group. Intriguingly, no protection was detected after BFR vaccination. All other groups did not demonstrate any protection.


Journal of Clinical Microbiology | 2006

Molecular Dipstick Test for Diagnosis of Sleeping Sickness

Stijn Deborggraeve; Filip Claes; Thierry Laurent; Pascal Mertens; Thierry Leclipteux; Jean-Claude Dujardin; Piet Herdewijn; P. Buscher

ABSTRACT Human African trypanosomiasis (HAT) or sleeping sickness is a neglected disease that affects poor rural populations across sub-Saharan Africa. Confirmation of diagnosis is based on detection of parasites in either blood or lymph by microscopy. Here we present the development and the first-phase evaluation of a simple and rapid test (HAT-PCR-OC [human African trypanosomiasis-PCR-oligochromatography]) for detection of amplified Trypanosoma brucei DNA. PCR products are visualized on a dipstick through hybridization with a gold-conjugated probe (oligochromatography). Visualization is straightforward and takes only 5 min. Controls both for the PCR and for DNA migration are incorporated into the assay. The lower detection limit of the test is 5 fg of pure T. brucei DNA. One parasite in 180 μl of blood is still detectable. Sensitivity and specificity for T. brucei were calculated at 100% when tested on blood samples from 26 confirmed sleeping sickness patients, 18 negative controls (nonendemic region), and 50 negative control blood samples from an endemic region. HAT-PCR-OC is a promising new tool for diagnosis of sleeping sickness in laboratory settings, and the diagnostic format described here may have wider application for other infectious diseases.


The Journal of Infectious Diseases | 2008

A Simplified and Standardized Polymerase Chain Reaction Format for the Diagnosis of Leishmaniasis

Stijn Deborggraeve; Thierry Laurent; Diego Espinosa; Gert Van der Auwera; Margaret Mbuchi; Monique Wasunna; Sayda El-Safi; Ahmed Almustafa Al-Basheer; Jorge Arevalo; Cesar Miranda-Verastegui; Thierry Leclipteux; Pascal Mertens; Jean-Claude Dujardin; Piet Herdewijn; Philippe Büscher

Abstract Background. Definite diagnosis of Leishmania infections is based on demonstration of the parasite by microscopic analysis of tissue biopsy specimens or aspirate samples. However, microscopy generally shows low sensitivity and requires invasive sampling. Methods. We describe here the development of a simple and rapid test for the detection of polymerase chain reaction-amplified Leishmania DNA. A phase 1 evaluation of the text was conducted in clinical samples from 60 nonendemic and 45 endemic control subjects and from 44 patients with confirmed cutaneous leishmaniasis (CL), 12 with mucocutaneous leishmaniasis (MCL), and 43 with visceral leishmaniasis (VL) from Peru, Kenya, and Sudan. Results. The lower detection limits of the assay are 10 fg of Leishmania DNA and 1 parasite in 180 µL of blood. The specificity was 98.3% (95% confidence interval [CI], 91.1%–99.7%) and 95.6% (95% CI, 85.2%–98.8%) for nonendemic and endemic control samples, respectively, and the sensitivity was 93.2% (95% CI, 81.8%–97.7%), 91.7% (95% CI, 64.6%–98.5%), and 86% (95% CI, 72.7%–93.4%) for lesions from patients with CL or MCL and blood from patients with VL, respectively. Conclusions. The Leishmania OligoC-TesT showed high specificity and sensitivity in clinical samples and was able to detect the parasite in samples obtained by less invasive means, such as blood, lymph, and lesion scrapings. The assay is a promising new tool for simplified and standardized molecular detection of Leishmania parasites.


Research in Microbiology | 2000

Genetic organisation of the lipopolysaccharide O-antigen biosynthesis region of brucella melitensis 16M (wbk).

Fabrice Godfroid; Axel Cloeckaert; Bernard Taminiau; Isabelle Danese; Anne Tibor; Xavier De Bolle; Pascal Mertens; Jean-Jacques Letesson

Brucella spp. are Gram-negative, facultative intracellular bacteria that cause a zoonotic world-wide disease. As in other Gram-negative bacteria, its S-LPS (smooth lipopolysaccharide) is a major determinant of virulence. The Brucella melitensis 16M LPS O-antigen is a homopolymer of 4-formamido-4,6, dideoxymannose. In this study, the previously cloned 14-kb wbk gene cluster was sequenced, and seven open reading frames (ORFs) as well as four insertion sequences were identified. Six of the seven ORFs are homologous to LPS biosynthesis genes from other organisms. The gmd, per and wbkC gene products are predicted to be involved in 4-formamido-4,6,dideoxymannose synthesis. By deletion experiments, we demonstrated that the putative formyltransferase WbkC is absolutely required for the O-side-chain production. The wbkA gene product is similar to several mannosyltransferases and is probably involved in the polymerisation of the B. melitensis O-side-chain. We also identified two genes (wzm and wzt) encoding proteins with high similarity to several two-component ABC (ATP-binding cassette) transporters. Their implication in O-antigen translocation across the inner membrane was confirmed by gene replacement. Finally, no function has been assigned to the wbkB gene either by homology search or functionally, because deletion of wbkB did not interfere with the O-antigen structure. The seven ORFs have a low G + C content, indicating that they might have been acquired by lateral transfer from a progenitor with more A + T rich DNA.


Infection and Immunity | 2001

Induction of Immune Response in BALB/c Mice with a DNA Vaccine Encoding Bacterioferritin or P39 of Brucella spp.

Ayman Al-Mariri; Anne Tibor; Pascal Mertens; Xavier De Bolle; Patrick Michel; Jacques Godfroid; Karl Walravens; Jean-Jacques Letesson

ABSTRACT In this study, we evaluated the ability of DNA vaccines encoding the bacterioferritin (BFR) or P39 proteins of Brucellaspp. to induce cellular and humoral immune responses and to protect BALB/c mice against a challenge with B. abortus544. We constructed eukaryotic expression vectors called pCIBFR and pCIP39, encoding BFR or P39 antigens, respectively, and we verified that these proteins were produced after transfection of COS-7 cells. PCIBFR or pCIP39 was injected intramuscularly three times, at 3-week intervals. pCIP39 induced higher antibody responses than did the DNA vector encoding BFR. Both vectors elicited a T-cell-proliferative response and also induced a strong gamma interferon production upon restimulation with either the specific antigens or Brucellaextract. In this report, we also demonstrat that animals immunized with these plasmids elicited a strong and long-lived memory immune response which persisted at least 3 months after the third vaccination. Furthermore, pCIBFR and pCIP39 induced a typical T-helper 1-dominated immune response in mice, as determined by cytokine or immunoglobulin G isotype analysis. The pCIP39 delivered by intramuscular injection (but not the pCIBFR or control vectors) induced a moderate protection in BALB/c mice challenged with B. abortus 544 compared to that observed in positive control mice vaccinated with S19.


Molecular Microbiology | 2002

Plasticity of a transcriptional regulation network among alpha‐proteobacteria is supported by the identification of CtrA targets in Brucella abortus

Anne-Flore Bellefontaine; Christophe E. Pierreux; Pascal Mertens; Jean Vandenhaute; Jean-Jacques Letesson; Xavier De Bolle

CtrA is a master response regulator found in many alpha‐proteobacteria. In Caulobacter crescentus and Sinorhizobium meliloti, this regulator is essential for viability and is transcriptionally autoregulated. In C. crescentus, it is required for the regulation of multiple cell cycle events, such as DNA methylation, DNA replication, flagella and pili biogenesis and septation. Here, we report the characterization of the ctrA gene homologue in the α2‐proteobacteria Brucella abortus, a facultative intracellular pathogen responsible for brucellosis. We detected CtrA expression in the main Brucella species, and its overproduction led to a phenotype typical of cell division defect, consistent with its expected role. A purified B. abortus CtrA recombinant protein (His6–CtrA) was shown to protect the B. abortus ctrA promoter from DNase I digestion, suggesting transcriptional autoregulation, and this protection was enhanced under CtrA phosphorylation on a conserved Asp residue. Despite the similarities shared by B. abortus and C. crescentus ctrA, the pathway downstream from CtrA may be distinct, at least partially, in both bacteria. Indeed, beside ctrA itself, only one (the ccrM gene) out of four B. abortus homologues of known C. crescentus CtrA targets is bound in vitro by phosphorylated B. abortus CtrA. Moreover, further footprinting experiments support the hypothesis that, in B. abortus, CtrA might directly regulate the expression of the rpoD, pleC, minC and ftsE homologues. Taken together, these results suggest that, in B. abortus and C. crescentus, similar cellular processes are regulated by CtrA through the control of distinct target genes. The plasticity of the regulation network involving CtrA in these two bacteria may be related to their distinct lifestyles.


Infection and Immunity | 2002

Yersinia enterocolitica as a Vehicle for a Naked DNA Vaccine Encoding Brucella abortus Bacterioferritin or P39 Antigen

Ayman Al-Mariri; Anne Tibor; Pascal Lestrate; Pascal Mertens; Xavier De Bolle; Jean-Jacques Letesson

ABSTRACT Brucella is a facultative intracellular parasite that causes brucellosis in animals and humans. The protective immune response against Brucella involves both humoral and cell-mediated immunity. In previous studies, we demonstrated that the T-dominant Brucella antigens bacterioferritin (BFR) and P39 administered either as CpG adjuvant recombinant proteins or as naked-DNA plasmids induced a specific Th1-biased immune response in mice. In order to improve the protection conferred by the BFR and P39 vaccines and to evaluate the additive role of antilipopolysaccharide (anti-LPS) antibodies, we used live attenuated Yersinia enterocolitica serotypes O:3 and O:9 as delivery vectors for naked-DNA plasmids encoding these BFR and P39 antigens. Following two intragastric immunizations in BALB/c mice, the Yersinia vectors harboring a DNA vaccine encoding BFR or P39 induced antigen-specific serum immunoglobulin and Th1-type responses (both lymphocyte proliferation and gamma interferon production) among splenocytes. Moreover, as expected, antibodies recognizing Brucella abortus 544 lipopolysaccharide were detected in O:9-immunized mice but not in O:3-treated animals. Animals immunized with O:9 organisms carrying pCI or with O:9 organisms alone were found to be significantly resistant to infection by B. abortus 544. Our data demonstrated that pCI plasmids encoding BFR or P39 and delivered with live attenuated strains of Yersinia O:3 or O:9 can trigger Th1-type responses. The fact than only O:9 vectors induced a highly significant protective immunity against B. abortus 544 infection pointed out the crucial role of anti-LPS antibodies in protection. The best protection was conferred by a serotype O:9 strain carrying pCIP39, confirming the importance of the P39 T-cell antigen in this mechanism.


PLOS Neglected Tropical Diseases | 2009

T. cruzi OligoC-TesT: a simplified and standardized polymerase chain reaction format for diagnosis of Chagas disease.

Stijn Deborggraeve; Ximena Coronado; Aldo Solari; Inés Zulantay; Werner Apt; Pascal Mertens; Thierry Laurent; Thierry Leclipteux; Tim Stessens; Jean-Claude Dujardin; Piet Herdewijn; Philippe Büscher

Background PCR has evolved into one of the most promising tools for T. cruzi detection in the diagnosis and control of Chagas disease. However, general use of the technique is hampered by its complexity and the lack of standardization. Methodology We here present the development and phase I evaluation of the T. cruzi OligoC-TesT, a simple and standardized dipstick format for detection of PCR amplified T. cruzi DNA. The specificity and sensitivity of the assay were evaluated on blood samples from 60 Chagas non-endemic and 48 endemic control persons and on biological samples from 33 patients, 7 reservoir animals, and 14 vectors collected in Chile. Principal Findings The lower detection limits of the T. cruzi OligoC-TesT were 1 pg and 1 to 10 fg of DNA from T. cruzi lineage I and II, respectively. The test showed a specificity of 100% (95% confidence interval [CI]: 96.6%–100%) on the control samples and a sensitivity of 93.9% (95% CI: 80.4%–98.3%), 100% (95% CI: 64.6%–100%), and 100% (95% CI: 78.5%–100%) on the human, rodent, and vector samples, respectively. Conclusions The T. cruzi OligoC-TesT showed high sensitivity and specificity on a diverse panel of biological samples. The new tool is an important step towards simplified and standardized molecular diagnosis of Chagas disease.

Collaboration


Dive into the Pascal Mertens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean T. Coulibaly

Swiss Tropical and Public Health Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stijn Deborggraeve

Institute of Tropical Medicine Antwerp

View shared research outputs
Top Co-Authors

Avatar

Céline Schurmans

Institute of Tropical Medicine Antwerp

View shared research outputs
Researchain Logo
Decentralizing Knowledge