Pascal Milesi
University of Montpellier
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pascal Milesi.
PLOS ONE | 2013
Nicolas Pocquet; Pascal Milesi; Patrick Makoundou; Sandra Unal; Betty Zumbo; Célestine M. Atyame; Frédéric Darriet; Jean-Sébastien Dehecq; J. Thiria; Ambicadutt Bheecarry; Diana P. Iyaloo; Mylène Weill; Fabrice Chandre; Pierrick Labbé
Several mosquito-borne diseases affect the Western Indian Ocean islands. Culex pipiens quinquefasciatus is one of these vectors and transmits filariasis, Rift Valley and West Nile viruses and the Japanese encephalitis. To limit the impact of these diseases on public health, considerable vector control efforts have been implemented since the 50s, mainly through the use of neurotoxic insecticides belonging to Organochlorines (OC), Organophosphates (OP) and pyrethroids (PYR) families. However, mosquito control failures have been reported on site, and they were probably due to the selection of resistant individuals in response to insecticide exposure. In this study, we used different approaches to establish a first regional assessment of the levels and mechanisms of resistance to various insecticides. Bioassays were used to evaluate resistance to various insecticides, enzyme activity was measured to assess the presence of metabolic resistances through elevated detoxification, and molecular identification of known resistance alleles was investigated to determine the frequency of target-site mutations. These complementary approaches showed that resistance to the most used insecticides families (OC, OP and PYR) is widespread at a regional scale. However, the distribution of the different resistance genes is quite heterogeneous among the islands, some being found at high frequencies everywhere, others being frequent in some islands and absent in others. Moreover, two resistance alleles displayed clinal distributions in Mayotte and La Réunion, probably as a result of a heterogeneous selection due to local treatment practices. These widespread and diverse resistance mechanisms reduce the capacity of resistance management through classical strategies (e.g. insecticide rotation). In case of a disease outbreak, it could undermine the efforts of the vector control services, as only few compounds could be used. It thus becomes urgent to find alternatives to control populations of Cx. p. quinquefasciatus in the Indian Ocean.
BMC Evolutionary Biology | 2013
Emilie Dumas; Célestine M. Atyame; Pascal Milesi; Dina M. Fonseca; Elena V. Shaikevich; Sandra Unal; Patrick Makoundou; Mylène Weill; Olivier Duron
BackgroundThe maternally inherited bacterium Wolbachia often acts as a subtle parasite that manipulates insect reproduction, resulting potentially in reproductive isolation between host populations. Whilst distinct Wolbachia strains are documented in a group of evolutionarily closely related mosquitoes known as the Culex pipiens complex, their impact on mosquito population genetics remains unclear. To this aim, we developed a PCR-RFLP test that discriminates the five known Wolbachia groups found in this host complex. We further examined the Wolbachia genetic diversity, the variability in the coinherited host mitochondria and their partitioning among members of the Cx. pipiens complex, in order to assess the impact of Wolbachia on host population structure.ResultsThere was a strong association between Wolbachia and mitochondrial haplotypes indicating a stable co-transmission in mosquito populations. Despite evidence that members of the Cx. pipiens complex are genetically distinct on the basis of nuclear DNA, the association of Wolbachia and mtDNA with members of the Cx. pipiens complex were limited. The Wolbachia wPip-I group, by far the most common, was associated with divergent Cx. pipiens members, including Cx. quinquefasciatus, Cx. pipiens pipiens form pipiens and Cx. pipiens pipiens form molestus. Four other wPip groups were also found in mosquito populations and all were shared between diverse Cx. pipiens members.ConclusionThis data overall supports the hypothesis that wPip infections, and their allied mitochondria, are associated with regular transfers between Cx. pipiens members rather than specific host associations. Overall, this is suggestive of a recent and likely ongoing cytoplasmic introgression through hybridization events across the Cx. pipiens complex.
PLOS ONE | 2014
Célestine M. Atyame; Pierrick Labbé; Emilie Dumas; Pascal Milesi; Sylvain Charlat; Philippe Fort; Mylène Weill
Many insect species harbor Wolbachia bacteria that induce cytoplasmic incompatibility (CI), i.e. embryonic lethality in crosses between infected males and uninfected females, or between males and females carrying incompatible Wolbachia strains. The molecular mechanism of CI remains unknown, but the available data are best interpreted under a modification–rescue model, where a mod function disables the reproductive success of infected males’ sperm, unless the eggs are infected and express a compatible resc function. Here we examine the evolution of CI in the mosquito Culex pipiens, harbouring a large number of closely related Wolbachia strains structured in five distinct phylogenetic groups. Specifically, we used a worldwide sample of mosquito lines to assess the hypothesis that genetic divergence should correlate with the divergence of CI properties on a low evolutionary scale. We observed a significant association of Wolbachia genetic divergence with CI patterns. Most Wolbachia strains from the same group were compatible whereas those from different groups were often incompatible. Consistently, we found a strong association between Wolbachia groups and their mod-resc properties. Finally, lines from the same geographical area were rarely incompatible, confirming the conjecture that the spatial distribution of Wolbachia compatibility types should be constrained by selection. This study indicates a clear correlation between Wolbachia genotypes and CI properties, paving the way toward the identification of the molecular basis of CI through comparative genomics.
Evolution | 2014
Pierrick Labbé; Pascal Milesi; André Yébakima; Nicole Pasteur; Mylène Weill; Thomas Lenormand
Gene duplications have long been advocated to contribute to the evolution of new functions. The role of selection in their early spread is more controversial. Unless duplications are favored for a direct benefit of increased expression, they are likely detrimental. In this article, we investigated the case of duplications favored because they combine already functionally divergent alleles. Their gene‐dosage/fitness relations are poorly known because selection may operate on both overall expression and duplicates relative dosage. Using the well‐documented case of Culex pipiens resistance to insecticides, we compared strains with various ace‐1 allele combinations, including two duplicated alleles carrying both susceptible and resistant copies. The overall protein activity was nearly additive, but, surprisingly, fitness correlated better with the relative proportion of susceptible and resistant copies rather than any absolute measure of activity. Gene dosage is thus crucial, duplications stabilizing a “heterozygote” phenotype. It corroborates the view that these were favored because they fix a permanent heterosis, thereby solving the irreducible trade‐off between resistance and synaptic transmission. Moreover, we showed that the contrasted successes of the two duplicated alleles in natural populations depend on genetic changes unrelated to ace‐1, confirming the probable implication of recessive sublethal mutations linked to structural rearrangements in some duplications.
Scientific Reports | 2015
Benoît S. Assogba; Luc Djogbénou; Pascal Milesi; Arnaud Berthomieu; Julie Perez; Diego Ayala; Fabrice Chandre; Michel Makoutodé; Pierrick Labbé; Mylène Weill
Widespread resistance to pyrethroids threatens malaria control in Africa. Consequently, several countries switched to carbamates and organophophates insecticides for indoor residual spraying. However, a mutation in the ace-1 gene conferring resistance to these compounds (ace-1R allele), is already present. Furthermore, a duplicated allele (ace-1D) recently appeared; characterizing its selective advantage is mandatory to evaluate the threat. Our data revealed that a unique duplication event, pairing a susceptible and a resistant copy of the ace-1 gene spread through West Africa. Further investigations revealed that, while ace-1D confers less resistance than ace-1R, the high fitness cost associated with ace-1R is almost completely suppressed by the duplication for all traits studied. ace-1 duplication thus represents a permanent heterozygote phenotype, selected, and thus spreading, due to the mosaic nature of mosquito control. It provides malaria mosquito with a new evolutionary path that could hamper resistance management.
PLOS Biology | 2016
Benoît S. Assogba; Pascal Milesi; Luc Djogbénou; Arnaud Berthomieu; Patrick Makoundou; Lamine Baba-Moussa; Anna-Sophie Fiston-Lavier; Khalid Belkhir; Pierrick Labbé; Mylène Weill
Gene copy-number variations are widespread in natural populations, but investigating their phenotypic consequences requires contemporary duplications under selection. Such duplications have been found at the ace-1 locus (encoding the organophosphate and carbamate insecticides’ target) in the mosquito Anopheles gambiae (the major malaria vector); recent studies have revealed their intriguing complexity, consistent with the involvement of various numbers and types (susceptible or resistant to insecticide) of copies. We used an integrative approach, from genome to phenotype level, to investigate the influence of duplication architecture and gene-dosage on mosquito fitness. We found that both heterogeneous (i.e., one susceptible and one resistant ace-1 copy) and homogeneous (i.e., identical resistant copies) duplications segregated in field populations. The number of copies in homogeneous duplications was variable and positively correlated with acetylcholinesterase activity and resistance level. Determining the genomic structure of the duplicated region revealed that, in both types of duplication, ace-1 and 11 other genes formed tandem 203kb amplicons. We developed a diagnostic test for duplications, which showed that ace-1 was amplified in all 173 resistant mosquitoes analyzed (field-collected in several African countries), in heterogeneous or homogeneous duplications. Each type was associated with different fitness trade-offs: heterogeneous duplications conferred an intermediate phenotype (lower resistance and fitness costs), whereas homogeneous duplications tended to increase both resistance and fitness cost, in a complex manner. The type of duplication selected seemed thus to depend on the intensity and distribution of selection pressures. This versatility of trade-offs available through gene duplication highlights the importance of large mutation events in adaptation to environmental variation. This impressive adaptability could have a major impact on vector control in Africa.
Molecular Ecology | 2016
Pascal Milesi; Thomas Lenormand; Christophe Lagneau; Mylène Weill; Pierrick Labbé
Quantifying links between ecological processes and adaptation dynamics in natura remains a crucial challenge. Many studies have documented the strength, form and direction of selection, and its variations in space and time, but only a few managed to link these variations to their proximal causes. This step is, however, crucial, if we are to understand how the variation in selective pressure affects adaptive allele dynamics in natural settings. We used data from a long‐term survey (about 30 years) monitoring the adaptation to insecticides of Culex pipiens mosquitoes in Montpellier area (France), focusing on three resistance alleles of the Ester locus. We used a population genetics model taking temporal and spatial variations in selective pressure into account, to assess the quantitative relationships between variations in the proximal agent of selection (amounts of insecticide sprayed) and the fitness of resistance alleles. The response to variations in selective pressure was fast, and the alleles displayed different fitness‐to‐environment relationships: the analyses revealed that even slight changes in insecticide doses could induce changes in the strength and direction of selection, thus changing the fitness ranking of the adaptive alleles. They also revealed that selective pressures other than the insecticides used for mosquito control affected the resistance allele dynamics. These fitness‐to‐environment relationships, fast responses and continuous evolution limit our ability to predict the outcome of adaptive allele dynamics in a changing environment, but they clearly contribute to the maintenance of polymorphism in natural populations. Our study also emphasizes the necessity of long‐term surveys in evolutionary ecology.
Parasites & Vectors | 2014
Benoît S. Assogba; Luc Djogbénou; Jacques Saizonou; Pascal Milesi; Laurette Djossou; Welbeck A Oumbouke; Fabrice Chandre; Lamine Baba-Moussa; Mylène Weill; Michel Makoutodé
BackgroundMalaria is endemic in sub-Saharan Africa with considerable burden for human health. Major insecticide resistance mechanisms such as kdrR and ace-1Ralleles constitute a hindrance to malaria vector control programs. Anopheles gambiae bearing both kdr and ace-1 resistant alleles are increasingly recorded in wild populations. In order to maintain the efficacy of vector control strategies, the characterization of concomitant kdr and ace-1 resistance, and their pleiotropic effects on malaria vector phenotype on insecticide efficacy are important.MethodsLarval and adult bioassays were performed with different insecticide classes used in public health following WHO standard guidelines on four laboratory Anopheles gambiae strains, sharing the same genetic background but harboring distinct resistance status: KISUMU with no resistance allele; ACERKIS with ace-1R allele; KISKDR with kdrR allele and ACERKDRKIS with both resistance alleles’ ace-1R and kdrR.ResultsLarval bioassays indicate that the homozygote resistant strain harboring both alleles (ACERKDRKIS) displayed slightly but significantly higher resistance level to various insecticides like carbamates (bendiocarb, p < 0.001; propoxur, p = 0.02) and organophosphates (chlorpyriphos-methyl, p = 0.002; fenitrothion, p < 0.001) when compared to ACERKIS strain. However, no differences were recorded between ACERKDRKIS and KISKDR resistance level against permethrin (Pyrethroid, p = 0.7) and DDT (Organochlorine, p = 0.24). For adult bioassays, the percentages of mosquitoes knocked down were significantly lower for ACERKDRKIS than for KISKDR with permethrin (p = 0.003) but not with deltamethrin. The percentage of mortality from adult bioassays was similar between ACERKDRKIS and ACERKIS with carbamates and organophosphates, or between ACERKDRKIS and KISKDR with pyrethroid and DDT. Concerning acetylcholinesterase enzyme, ACERKDRKIS strain showed similarAChE1 activity than that of ACERKIS.ConclusionThe presence of both kdrR and ace-1R alleles seems to increase the resistance levels to both carbamate and organophosphate insecticides and at operational level, may represent an important threat to malaria vector control programs in West Africa.
PLOS ONE | 2015
Malal Mamadou Diop; Nicolas Moiroux; Fabrice Chandre; Hadrien Martin-Herrou; Pascal Milesi; Olayidé Boussari; Angélique Porciani; Stéphane Duchon; Pierrick Labbé; Cédric Pennetier
In response to the widespread use of control strategies such as Insecticide Treated Nets (ITN), Anopheles mosquitoes have evolved various resistance mechanisms. Kdr is a mutation that provides physiological resistance to the pyrethroid insecticides family (PYR). In the present study, we investigated the effect of the Kdr mutation on the ability of female An. gambiae to locate and penetrate a 1cm-diameter hole in a piece of netting, either treated with insecticide or untreated, to reach a bait in a wind tunnel. Kdr homozygous, PYR-resistant mosquitoes were the least efficient at penetrating an untreated damaged net, with about 51% [39-63] success rate compared to 80% [70-90] and 78% [65-91] for homozygous susceptible and heterozygous respectively. This reduced efficiency, likely due to reduced host-seeking activity, as revealed by mosquito video-tracking, is evidence of a recessive behavioral cost of the mutation. Kdr heterozygous mosquitoes were the most efficient at penetrating nets treated with PYR insecticide, thus providing evidence for overdominance, the rarely-described case of heterozygote advantage conveyed by a single locus. The study also highlights the remarkable capacity of female mosquitoes, whether PYR-resistant or not, to locate holes in bed-nets.
Evolution Letters | 2017
Pascal Milesi; Mylène Weill; Thomas Lenormand; Pierrick Labbé
Gene duplications are widespread in genomes, but their role in contemporary adaptation is not fully understood. Although mostly deleterious, homogeneous duplications that associate identical repeats of a locus often increase the quantity of protein produced, which can be selected in certain environments. However, another type exists: heterogeneous gene duplications, which permanently associate two (or more) alleles of a single locus on the same chromosome. They are far less studied, as only few examples of contemporary heterogeneous duplications are known. Haldane proposed in 1954 that they could be adaptive in situations of heterozygote advantage, or overdominance, but this hypothesis was never tested. To assess its validity, we took advantage of the well‐known model of insecticide resistance in mosquitoes. We used experimental evolution to estimate the fitnesses associated with homozygous and heterozygous genotypes in different selection regimes. It first showed that balanced antagonist selective pressures frequently induce overdominance, generating stable polymorphic equilibriums. The frequency of equilibrium moreover depends on the magnitude of two antagonistic selective pressures, the survival advantage conferred by the resistant allele versus the selective costs it induces. We then showed that heterogeneous duplications are selected over single‐copy alleles in such contexts. They allow the fixation of the heterozygote phenotype, providing an alternative and stable intermediate fitness trade‐off. By allowing the rapid fixation of divergent alleles, this immediate advantage could contribute to the rarity of overdominance. More importantly, it also creates new material for long‐term genetic innovation, making a crucial but underestimated contribution to the evolution of new genes and gene families.